Abstract
Optical communication channels have redefined the scope and applications of classical computing; similarly, photonic transfer of quantum information promises to open new horizons for quantum computing. The implementation of light–matter interfaces that preserve quantum information is technologically challenging, but key building blocks for such devices have recently been demonstrated by several research groups. Here, we outline the theoretical framework for information transfer between the nodes of a quantum network, review the current experimental state of the art and discuss the prospects for hybrid systems currently in development.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
High-fidelity quantum information transmission using a room-temperature nonrefrigerated lossy microwave waveguide
Scientific Reports Open Access 29 September 2022
-
Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters
Nature Communications Open Access 26 May 2022
-
Genuine quantum networks with superposed tasks and addressing
npj Quantum Information Open Access 07 September 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).
Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. Ann. Symp. Found. Comput. Sci. 124–134 (1994).
Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).
Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).
Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, 2006).
Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999).
Van Enk, S. J., Cirac, J. I. & Zoller, P. Ideal quantum communication over noisy channels: a quantum optical implementation. Phys. Rev. Lett. 78, 4293–4296 (1997).
Van Enk, S. J., Cirac, J. I. & Zoller, P. Purifying two-bit quantum gates and joint measurements in cavity QED. Phys. Rev. Lett. 79, 5178–5181 (1997).
Duan, L.-M. & Monroe, C. Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010).
Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).
Cabrillo, C., Cirac, J. I., García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).
Feng, X.-L., Zhang, Z.-M., Li, X. D., Gong, S.-Q. & Xu, Z.-Z. Entangling distant atoms by interference of polarized photons. Phys. Rev. Lett. 90, 217902 (2003).
Duan, L.-M. & Kimble, H. J. Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003).
Simon, C. & Irvine, W. T. M. Robust long-distance entanglement and a loophole-free Bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999).
Puppe, T. et al. Trapping and observing single atoms in a blue-detuned intracavity dipole trap. Phys. Rev. Lett. 99, 013002 (2007).
Sauer, J. A., Fortier, K. M., Chang, M. S., Hamley, C. D. & Chapman, M. S. Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804 (2004).
Nußmann, S. et al. Submicron positioning of single atoms in a microcavity. Phys. Rev. Lett. 95, 173602 (2005).
Khudaverdyan, M. et al. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system. Phys. Rev. Lett. 103, 123006 (2009).
Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).
Schrader, D. et al. An optical conveyor belt for single neutral atoms. Appl. Phys. B 73, 819–824 (2001).
Miller, R. et al. Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B 38, S551–S565 (2005).
Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).
Steiner, M., Meyer, H. M., Deutsch, C., Reichel, J. & Köhl, M. Single ion coupled to an optical fiber cavity. Phys. Rev. Lett. 110, 043003 (2013).
Guthöhrlein, G. R., Keller, M., Hayasaka, K., Lange, W. & Walther, H. A single ion as a nanoscopic probe of an optical field. Nature 414, 49–51 (2001).
Russo, C. et al. Raman spectroscopy of a single ion coupled to a high-finesse cavity. Appl. Phys. B 95, 205–212 (2009).
Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006).
Stute, A. et al. Toward an ion–photon quantum interface in an optical cavity. Appl. Phys. B 107, 1145–1157 (2012).
Reiserer, A., Nölleke, C., Ritter, S. & Rempe, G. Ground-state cooling of a single atom at the center of an optical cavity. Phys. Rev. Lett. 110, 223003 (2013).
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).
Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H. & Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974–4977 (1997).
Chan, H. W., Black, A. T. & Vuletić, V. Observation of collective-emission-induced cooling of atoms in an optical cavity. Phys. Rev. Lett. 90, 063003 (2003).
Maunz, P. et al. Cavity cooling of a single atom. Nature 428, 50–52 (2004).
Fortier, K. M., Kim, S. Y., Gibbons, M. J., Ahmadi, P. & Chapman, M. S. Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007).
Leibrandt, D. R., Labaziewicz, J., Vuletić, V. & Chuang, I. L. Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103, 103001 (2009).
Kubanek, A. et al. Photon-by-photon feedback control of a single-atom trajectory. Nature 462, 898–901 (2009).
Koch, M. et al. Feedback cooling of a single neutral atom. Phys. Rev. Lett. 105, 173003 (2010).
Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).
Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007).
Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).
Lettner, M. et al. Remote entanglement between a single atom and a Bose-Einstein condensate. Phys. Rev. Lett. 106, 210503 (2011).
Stute, A. et al. Quantum-state transfer from an ion to a photon. Nature Photon. 7, 219–222 (2013).
Häffner, H., Roos, C. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).
Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).
Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).
Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006).
Matsukevich, D. N. et al. Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405 (2005).
Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).
Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).
Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).
Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).
De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).
Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).
Stute, A. et al. Tunable ion–photon entanglement in an optical cavity. Nature 485, 482–485 (2012).
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).
Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).
Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).
Usmani, I. et al. Heralded quantum entanglement between two crystals. Nature Photon. 6, 234–237 (2012).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).
Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).
Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).
Maunz, P. et al. Heralded quantum gate between remote quantum memories. Phys. Rev. Lett. 102, 250502 (2009).
Nölleke, C. et al. Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013).
Bao, X.-H. et al. Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl Acad. Sci. USA 109, 20347–20351 (2012).
Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nature Phys. 9, 400–404 (2013).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 389–394 (Cambridge Univ. Press, 2010).
Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).
Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).
Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).
Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006).
Maiwald, R. et al. Stylus ion trap for enhanced access and sensing. Nature Phys. 5, 551–554 (2009).
Shu, G., Kurz, N., Dietrich, M. R. & Blinov, B. B. Efficient fluorescence collection from trapped ions with an integrated spherical mirror. Phys. Rev. A 81, 042321 (2010).
Streed, E. W., Norton, B. G., Jechow, A., Weinhold, T. J. & Kielpinski, D. Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106, 010502 (2011).
Brady, G. R. et al. Integration of fluorescence collection optics with a microfabricated surface electrode ion trap. Appl. Phys. B 103, 801–808 (2011).
Merrill, J. T. et al. Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13, 103005 (2011).
VanDevender, A. P., Colombe, Y., Amini, J., Leibfried, D. & Wineland, D. J. Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105, 023001 (2010).
Hadden, J. P. et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. App. Phys. Lett. 97, 241901 (2010).
Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).
Casabone, B. et al. Heralded entanglement of two ions in an optical cavity. Phys. Rev. Lett. 111, 100505 (2013).
Zhang, R., Garner, S. R. & Hau, L. V. Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates. Phys. Rev. Lett. 103, 233602 (2009).
Schnorrberger, U. et al. Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys. Rev. Lett. 103, 033003 (2009).
Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).
Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).
Lidar, D. A. & Whaley, K. B. in Irreversible Quantum Dynamics (eds Benatti, F. & Floreanini, R.) 83–120 (Lecture Notes in Physics Series 622, Springer, 2003).
Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nature Phys. 6, 894–899 (2010).
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).
Lang, C. et al. Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies. Nature Phys. 9, 345–348 (2013).
Kubo, Y. et al. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010).
Schuster, D. I. et al. High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010).
Zhu, X. et al. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011).
Amsüss, R. et al. Cavity QED with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011).
Probst, S. et al. Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. Phys. Rev. Lett. 110, 157001 (2013).
Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005).
Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).
Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).
Clausen, C., Bussières, F., Afzelius, M. & Gisin, N. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. Phys. Rev. Lett. 108, 190503 (2012).
Gündoğan, M., Ledingham, P. M., Almasi, A., Cristiani, M. & de Riedmatten, H. Quantum storage of a photonic polarization qubit in a solid. Phys. Rev. Lett. 108, 190504 (2012).
Zhou, Z.-Q., Lin, W.-B., Yang, M., Li, C.-F. & Guo, G.-C. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108, 190505 (2012).
Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013).
Kuhn, A., Hennrich, M., Bondo, T. & Rempe, G. Controlled generation of single photons from a strongly coupled atom-cavity system. Appl. Phys. B 69, 373–377 (1999).
Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).
Acknowledgements
We thank S. Olmschenk, C. Monroe, W. Rosenfeld, J. Majer, P. Bushev and H. de Riedmatten for providing images and feedback and G. Kirchmair, S. Ritter, B. Casabone, K. Friebe and Y. Colombe for helpful comments. We gratefully acknowledge support from the Austrian Science Fund (FWF) (Project Nos. F4002-N16, F4019-N16 and V252), the European Research Council through the Cryogenic Traps for Entanglement Research with IONs (CRYTERION) Project, the European Commission via the Atomic Quantum Technologies (AQUTE) Integrating Project, the Intelligence Advanced Research Projects Agency and the Institut für Quanteninformation GmbH.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Northup, T., Blatt, R. Quantum information transfer using photons. Nature Photon 8, 356–363 (2014). https://doi.org/10.1038/nphoton.2014.53
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2014.53
This article is cited by
-
Collapse of Superradiant Phase and Unstable Macroscopic Vacuum State in An-Optomechanical-Dual-Cavity with a Bose-Einstein Condensate
International Journal of Theoretical Physics (2023)
-
High-fidelity quantum information transmission using a room-temperature nonrefrigerated lossy microwave waveguide
Scientific Reports (2022)
-
Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters
Nature Communications (2022)
-
Exploration of nonlinear optical enhancement and interesting optical behavior with pyrene moiety as the conjugated donor and efficient modification in acceptor moieties
Optical and Quantum Electronics (2022)
-
Casual relationship of entanglement between birefringence beams of light through chiral medium
Journal of Optics (2022)