Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental three-photon quantum nonlocality under strict locality conditions


Quantum correlations, often observed as violations of Bell inequalities1,2,3,4,5, are critical to our understanding of the quantum world, with far-reaching technological6,7,8,9 and fundamental impact. Many tests of Bell inequalities have studied pairs of correlated particles. However, interest in multi-particle quantum correlations is driving the experimental frontier to test larger systems. All violations to date require supplementary assumptions that open results to loopholes, the closing of which is one of the most important challenges in quantum science. Seminal experiments have closed some loopholes10,11,12,13,14,15,16, but no experiment has closed locality loopholes with three or more particles. Here, we close both the locality and freedom-of-choice loopholes by distributing three-photon Greenberger–Horne–Zeilinger entangled states17 to independent observers. We measured a violation of Mermin's inequality18 with parameter 2.77 ± 0.08, violating its classical bound by nine standard deviations. These results are a milestone in multi-party quantum communication19 and a significant advancement of the foundations of quantum mechanics20.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Experimentally measured three-photon polarization correlations.
Figure 3: Space–time analysis of the experiment.


  1. Bell, J. S. On the Einstein Podolsky and Rosen paradox. Physics 1, 195–200 (1964).

    Article  MathSciNet  Google Scholar 

  2. Clauser, J. F. et al. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  3. Freedman, S. J. & Clauser, J. F. Experimental test of local-hidden variable theories. Phys. Rev. Lett. 28, 938–941 (1972).

    Article  ADS  Google Scholar 

  4. Fry, E. S. & Thompson, R. C. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 37, 465–468 (1976).

    Article  ADS  Google Scholar 

  5. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982).

    Article  ADS  Google Scholar 

  6. Bennett, C. H. & Brassard, G. in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing 175–179 (IEEE, 1984).

    Google Scholar 

  7. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    Article  ADS  Google Scholar 

  8. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  9. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  10. Rowe, M. A. et al. Experimental violation of Bell's inequality with efficient detection. Nature 409, 791–794 (2001).

    Article  ADS  Google Scholar 

  11. Giustina, M. et al. Bell violation using entangled photons without the fair sampling assumption. Nature 497, 227–230 (2013).

    Article  ADS  Google Scholar 

  12. Christensen, B. G. et al. Detection-loophole-free test of quantum nonlocality, and applications. Preprint at (2013).

  13. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  14. Weihs, G. et al. Violation of Bell's inequalities under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  15. Scheidl, T. et al. Violation of local realism with freedom of choice. Proc. Natl Acad. Sci. USA 107, 19708–19713 (2010).

    Article  ADS  Google Scholar 

  16. Barreiro, J. et al. Demonstration of genuine multipartite entanglement with device-independent witnesses. Nature Phys. 9, 559–562 (2013).

    Article  ADS  Google Scholar 

  17. Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell's Theorem, Quantum Theory, and Conceptions of the Universe (ed. Kafatos, M.) 73–76 (Kluwer Academic, 1989).

    Google Scholar 

  18. Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  19. Hillery, M., Buzček, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  20. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  21. Greenberger, D. M. et al. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  22. Bell, J. Bertlmann's socks and the nature of reality. J. Phys. Colloq. 42(C2), 41–62 (1981).

    Article  Google Scholar 

  23. Pearle, P. M. Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418–1425 (1970).

    Article  ADS  Google Scholar 

  24. Pan, J.-W. et al. Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 (2000).

    Article  ADS  Google Scholar 

  25. Zhao, Z. et al. Experimental violation of local realism by four-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 91, 180401 (2003).

    Article  ADS  Google Scholar 

  26. Lavoie, J., Kaltenbaek, R. & Resch, K. J. Experimental violation of Svetlichny's inequality. New J. Phys. 11, 073051 (2009).

    Article  ADS  Google Scholar 

  27. Altepeter, J., Jeffrey, E. & Kwiat, P. Phase-compensated ultra-bright source of entangled photons. Opt. Express 13, 8951–8959 (2005).

    Article  ADS  Google Scholar 

  28. Fedrizzi, A. et al. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).

    Article  ADS  Google Scholar 

  29. Hübel, H. et al. Direct generation of photon triplets using cascaded photon-pair sources. Nature 466, 601–603 (2010).

    Article  ADS  Google Scholar 

  30. Lamas-Linares, A., Howell, J. C. & Bouwmeester, D. Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001).

    Article  ADS  Google Scholar 

  31. Jennewein, T. et al. A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675–1680 (2000).

    Article  ADS  Google Scholar 

  32. Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  33. Svetlichny, G. Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066–3069 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  34. Zukowski, M., Zeilinger, A., Horne, M. A. & Weinfurter, H. Quest for GHZ states. Acta Phys. Pol. 93, 187–195 (1998).

    Article  Google Scholar 

Download references


The authors thank D. Hamel and T. Bergmann for technical discussions, J. Dengis and C. Holloway for assistance in the laboratory, M. Ditty, F. Hamdullahpur, D. Huber, D. Parent, R. Zalagenas, M. Lazaridis and G. Dixon for their support in gaining access to the roof of RAC, P. Fulcher for safety training, A. Conrad, AGFA and C. Stewart for allowing access to private property, B. Zinger, G. Doyle, D. Copeland, R. Reger, B. Mill, T. Galloway and Z. Wang for carpentry and electronics, S. Payne at Leysop Ltd for assistance with Pockels cells, M. Morelli at for technical advice on wireless networks, Roncare and UW plant operations for snow ploughing, and M. Seibel for towing. The authors acknowledge financial support from the National Sciences and Engineering Research Council (NSERC), Canada Research Chairs (CRC), Canada Foundation for Innovation (CFI), European Research Council (ERC, Project “EnSeNa”), Industry Canada, Canadian Institute for Advanced Research (CIFAR), Ontario Centres of Excellence (OCE) and QuantumWorks. R.P. acknowledges support from the Fonds zur Förderung der wissenschaftlichen Forschung (FWF, J2960-N20), Ministry of Research and Innovation Canada (MRI), the Vienna International Post-Doctoral (VIPS) Program of the Austrian Federal Ministry of Science and Research and the City of Vienna, as well as the European Commission (Marie Curie, FP7-PEOPLE-2011-IIF).

Author information

Authors and Affiliations



C.E., R.L., G.W., T.J. and K.J.R. conceived the experiment. C.E., E.M.S., K.F., J.L., B.L.H., Z.Y., C.P., J.P.B., R.P., L.R. and N.G. constructed the experiment. B.L.H. and L.K.S. performed the space–time analysis. C.E., E.M.S., K.F., J.L., C.P. and J.P.B. collected the data. C.E. analysed the data. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to C. Erven or K. J. Resch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 753 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erven, C., Meyer-Scott, E., Fisher, K. et al. Experimental three-photon quantum nonlocality under strict locality conditions. Nature Photon 8, 292–296 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing