Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Externally refuelled optical filaments

Abstract

Plasma channels produced in air through femtosecond laser filamentation1,2,3,4 hold great promise for a number of applications, including remote sensing5, attosecond physics6,7 and spectroscopy8, channelling microwaves9,10,11,12 and lightning protection13. In such settings, extended filaments are desirable, yet their longitudinal span is limited by dissipative processes. Although various techniques aiming to prolong this process have been explored, the substantial extension of optical filaments remains a challenge14,15,16,17,18,19,20,21. Here, we experimentally demonstrate that the natural range of a plasma column can be enhanced by at least an order of magnitude when the filament is prudently accompanied by an auxiliary beam. In this arrangement, the secondary low-intensity ‘dressing’ beam propagates linearly and acts as a distributed energy reservoir22, continuously refuelling the optical filament. Our approach offers an efficient and viable route towards the generation of extended light strings in air without inducing premature wave collapse or an undesirable beam break-up into multiple filaments2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A dressed filament considerably protracts the longevity of an optical filament.
Figure 2: Experimental investigation of dressed optical filaments.
Figure 4: Dressed optical filaments in long-range settings.
Figure 3: Plasma density generated by the application of a Bessel beam for different values of laser energy.

Similar content being viewed by others

References

  1. Braun, A. et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73–75 (1995).

    Article  ADS  Google Scholar 

  2. Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    Article  ADS  Google Scholar 

  3. Berge, L. Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259–370 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. Mlejnek, M., Wright, E. M. & Moloney, J. V. Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382–384 (1998).

    Article  ADS  Google Scholar 

  5. Luo, Q. et al. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy. Appl. Phys. B 82, 105–109 (2006).

    Article  ADS  Google Scholar 

  6. Stibenz, G., Zhavoronkov, N. & Steinmeyer, G. Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett. 31, 274–276 (2006).

    Article  ADS  Google Scholar 

  7. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  8. Singh, J. P. & Thakur, S. N. Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

    Google Scholar 

  9. Chateauneuf, M., Payeur, S., Dubois, J. & Kieffer, J. C. Microwave guiding in air by a cylindrical filament array waveguide. Appl. Phys. Lett. 92, 091104 (2008).

    Article  ADS  Google Scholar 

  10. Marian, A. et al. The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air. Phys. Plasmas 20, 023301 (2013).

    Article  ADS  Google Scholar 

  11. Alshershby, M., Hao, Z. & Lin, J. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding. Phys. Plasmas 20, 013501 (2013).

    Article  ADS  Google Scholar 

  12. Ren, Y., Alshershby, M., Qin, J., Hao, Z. & Lin, J. Microwave guiding in air along single femtosecond laser filament. J. Appl. Phys. 113, 094904 (2013).

    Article  ADS  Google Scholar 

  13. Kasparian, J. et al. Electric events synchronized with laser filaments in thunderclouds. Opt. Express 16, 5757–5763 (2008).

    Article  ADS  Google Scholar 

  14. Tzortzakis, S. et al. Concatenation of plasma filaments created in air by femtosecond infrared laser pulses. Appl. Phys. B 76, 609–612 (2003).

    Article  ADS  Google Scholar 

  15. Cai, H., Wu, J., Li, H., Bai, X. & Zeng, H. Elongation of femtosecond filament by molecular alignment in air. Opt. Express 17, 21060–21065 (2009).

    Article  ADS  Google Scholar 

  16. Wang, H., Fan, C., Zhang, P., Zhang, J. & Qiao, C. Extending mechanism of femtosecond filamentation by double coaxial beams. Opt. Commun. 305, 48–52 (2013).

    Article  ADS  Google Scholar 

  17. Polynkin, P. et al. Generation of extended plasma channels in air using femtosecond Bessel beams. Opt. Express 16, 15733–15740 (2008).

    Article  ADS  Google Scholar 

  18. Fu, Y. et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate. Opt. Lett. 34, 3752–3754 (2009).

    Article  ADS  Google Scholar 

  19. Sun, X. et al. Multiple filamentation generated by focusing femtosecond laser with axicon. Opt. Lett. 37, 857–859 (2012).

    Article  ADS  Google Scholar 

  20. Kosareva, O. G., Grigor'evskii, A. V. & Kandidov, V. P. Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse. Quantum Electron. 35, 1013–1014 (2005).

    Article  ADS  Google Scholar 

  21. Akturk, S. et al. Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon. Opt. Commun. 282, 129–134 (2009).

    Article  ADS  Google Scholar 

  22. Mills, M. S., Kolesik, M. & Christodoulides, D. N. Dressed optical filaments. Opt. Lett. 38, 25–27 (2013).

    Article  ADS  Google Scholar 

  23. Wood, W. M., Siders, C. W. & Downer, M. C. Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting. Phys. Rev. Lett. 67, 3523–3526 (1991).

    Article  ADS  Google Scholar 

  24. Wu, J., Cai, H., Zeng, H. & Couairon, A. Femtosecond filamentation and pulse compression in the wake of molecular alignment. Opt. Lett. 33, 2593–2595 (2008).

    Article  ADS  Google Scholar 

  25. Yang, X. et al. Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air. Appl. Phys. Lett. 95, 111103 (2009).

    Article  ADS  Google Scholar 

  26. Skupin, S., Stibenz, G. & Bergé, L. Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations. Phys. Rev. E 74, 056604 (2006).

    Article  ADS  Google Scholar 

  27. Xi, T. T., Lu, X. & Zhang, J. Interaction of light filaments generated by femtosecond laser pulses in air. Phys. Rev. Lett. 96, 025003 (2006).

    Article  ADS  Google Scholar 

  28. Liu, W. et al. Experiment and simulations on the energy reservoir effect in femtosecond light filaments. Opt. Lett. 30, 2602–2604 (2005).

    Article  ADS  Google Scholar 

  29. Mlejnek, M., Kolesik, M. & Moloney, J. V. & Wright, E. M. Optically turbulent femtosecond light guide in air. Phys. Rev. Lett. 83, 2938–2941 (1999).

    Article  ADS  Google Scholar 

  30. Kolesik, M. & Moloney, J. V. Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations. Phys. Rev. E 70, 036604 (2004).

    Article  ADS  Google Scholar 

  31. Clerici, M. et al. Finite-energy, accelerating Bessel pulses. Opt. Express 16, 19807–19811 (2008).

    Article  ADS  Google Scholar 

  32. Abdollahpour, D., Suntsov, S., Papazoglou, D. G. & Tzortzakis, S. Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments. Opt. Express 19, 16866–16871 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (AFOSR; grants FA9550-10-1-056 and FA9550-12-1-0143) and the Defense Threat Reduction Agency (DTRA; grant HDTRA 1-14-1-0009).

Author information

Authors and Affiliations

Authors

Contributions

M.S.M., M.K. and D.N.C. suggested the idea of dressed filaments. M.S.M., M.-A.M. and D.N.C. produced the manuscript, figures and accompanying Supplementary Information. M.S.M. explored the theoretical aspects of the paper and simulated the process using M.K.'s code. M.S., W.C., J.V.M. and P.P. carried out the experiments reported in this study.

Corresponding author

Correspondence to Demetrios N. Christodoulides.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1363 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheller, M., Mills, M., Miri, MA. et al. Externally refuelled optical filaments. Nature Photon 8, 297–301 (2014). https://doi.org/10.1038/nphoton.2014.47

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing