Broadband single-photon-level memory in a hollow-core photonic crystal fibre

Article metrics

Abstract

Storing information encoded in light is critical for realizing optical buffers for all-optical signal processing1,2 and quantum memories for quantum information processing3,4. These proposals require efficient interaction between atoms and a well-defined optical mode. Photonic crystal fibres can enhance light–matter interactions and have engendered a broad range of nonlinear effects5; however, the storage of light has proven elusive. Here, we report the first demonstration of an optical memory in a hollow-core photonic crystal fibre. We store gigahertz-bandwidth light in the hyperfine coherence of caesium atoms at room temperature using a far-detuned Raman interaction. We demonstrate a signal-to-noise ratio of 2.6:1 at the single-photon level and a memory efficiency of 27 ± 1%. Our results demonstrate the potential of a room-temperature fibre-integrated optical memory for implementing local nodes of quantum information networks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Raman quantum memory in kagome hollow-core fibre.
Figure 2: Storage of classical light in a kagome hollow-core fibre.
Figure 3: Storage of single-photon-level pulses.
Figure 4: Lifetime of memory in hollow-core fibre.

References

  1. 1

    Ramaswami, R., Sivarajan, K. & Sasaki, G. Optical Networks: A Practical Perspective (Morgan Kaufmann, 2009).

  2. 2

    Zhu, Z., Gauthier, D. J. & Boyd, R. W. Stored light in an optical fiber via stimulated Brillouin scattering. Science 318, 1748–1750 (2007).

  3. 3

    Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

  4. 4

    Lukin, M. D. Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

  5. 5

    Russell, P. S. Photonic-crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006).

  6. 6

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

  7. 7

    Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

  8. 8

    Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

  9. 9

    Nunn, J. et al. Enhancing multiphoton rates with quantum memories. Phys. Rev. Lett. 110, 133601 (2013).

  10. 10

    Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

  11. 11

    Julsgaard, B., Sherson, J., Cirac, J. I., Fiurasek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

  12. 12

    Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

  13. 13

    Wu, B. et al. Slow light on a chip via atomic quantum state control. Nature Photon. 4, 776–779 (2010).

  14. 14

    Spillane, S. et al. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett. 100, 233602 (2008).

  15. 15

    Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

  16. 16

    Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nature Photon. 7, 138–141 (2013).

  17. 17

    Ghosh, S. et al. Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber. Phys. Rev. Lett. 97, 023603 (2006).

  18. 18

    Londero, P., Venkataraman, V., Bhagwat, A. R., Slepkov, A. D. & Gaeta, A. L. Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber. Phys. Rev. Lett. 103, 043602 (2009).

  19. 19

    Sprague, M. R. et al. Efficient optical pumping and high optical depth in a hollow-core photonic-crystal fibre for a broadband quantum memory. New J. Phys. 15, 055013 (2013).

  20. 20

    Perrella, C., Light, P. S., Stace, T. M., Benabid, F. & Luiten, A. N. High-resolution optical spectroscopy in a hollow-core photonic crystal fiber. Phys. Rev. A 85, 012518 (2012).

  21. 21

    Nunn, J. et al. Mapping broadband single-photon wave packets into an atomic memory. Phys. Rev. A 75, 011401 (2007).

  22. 22

    Reim, K. F. et al. Towards high-speed optical quantum memories. Nature Photon. 4, 218–221 (2010).

  23. 23

    Reim, K. F. et al. Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107, 053603 (2011).

  24. 24

    Benabid, F. & Roberts, P. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt. 58, 87–124 (2011).

  25. 25

    Slepkov, A. D., Bhagwat, A. R., Venkataraman, V., Londero, P. & Gaeta, A. L. Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers. Opt. Express 16, 18976–18983 (2008).

  26. 26

    Wang, X., Zhu, T., Chen, L. & Bao, X. Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser. Opt. Express 19, 9617–9625 (2011).

  27. 27

    Krapick, S. et al. An efficient integrated two-color source for heralded single photons. New J. Phys. 15, 033010 (2013).

  28. 28

    Bradley, T., McFerran, J. J., Jouin, J., Thomas, P. & Benabid, F. in OSA Technical Digest, CM3I.2 (Optical Society of America, 2013).

  29. 29

    Fernandez-Gonzalvo, X. et al. Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. Opt. Express 21, 19473–19487 (2013).

  30. 30

    Benabid, F., Couny, F., Knight, J. C., Birks, T. A. & Russell, P. S. J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

Download references

Acknowledgements

The authors thank D. Saunders for comments on the manuscript. The work was supported by the Engineering and Physical Sciences Research Council (EPSRC; EP/J000051/1), the Quantum Interfaces, Sensors, and Communication based on Entanglement Integrating Project (EU IP Q-ESSENCE; 248095), the Air Force Office of Scientific Research: European Office of Aerospace Research & Development (AFOSR EOARD; FA8655-09-1-3020), EU IP SIQS (600645), the Royal Society, the Clarendon Fund (to M.R.S.), St Edmund Hall (to M.R.S.), EU ITN FASTQUAST (to P.S.M.), and an EU Marie-Curie Fellowship (PIIF-GA-2011-300820 to X.-M.J.; PIEF-GA-2012-331859 to W.S.K.).

Author information

M.R.S. designed the experiment and built it with assistance from D.G.E., P.S.M., W.S.K. and T.F.M.C. A.A. and P.St.J.R. designed and drew the fibre and provided valuable insights. M.R.S. collected and analysed the data. J.N. and M.R.S. performed the comparison to theory. The project was conceived by M.R.S., J.N., X.M.J. and I.A.W. M.R.S. wrote the manuscript with input from all authors.

Correspondence to M. R. Sprague.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 440 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sprague, M., Michelberger, P., Champion, T. et al. Broadband single-photon-level memory in a hollow-core photonic crystal fibre. Nature Photon 8, 287–291 (2014) doi:10.1038/nphoton.2014.45

Download citation

Further reading