Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Broadband single-photon-level memory in a hollow-core photonic crystal fibre


Storing information encoded in light is critical for realizing optical buffers for all-optical signal processing1,2 and quantum memories for quantum information processing3,4. These proposals require efficient interaction between atoms and a well-defined optical mode. Photonic crystal fibres can enhance light–matter interactions and have engendered a broad range of nonlinear effects5; however, the storage of light has proven elusive. Here, we report the first demonstration of an optical memory in a hollow-core photonic crystal fibre. We store gigahertz-bandwidth light in the hyperfine coherence of caesium atoms at room temperature using a far-detuned Raman interaction. We demonstrate a signal-to-noise ratio of 2.6:1 at the single-photon level and a memory efficiency of 27 ± 1%. Our results demonstrate the potential of a room-temperature fibre-integrated optical memory for implementing local nodes of quantum information networks.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Raman quantum memory in kagome hollow-core fibre.
Figure 2: Storage of classical light in a kagome hollow-core fibre.
Figure 3: Storage of single-photon-level pulses.
Figure 4: Lifetime of memory in hollow-core fibre.


  1. Ramaswami, R., Sivarajan, K. & Sasaki, G. Optical Networks: A Practical Perspective (Morgan Kaufmann, 2009).

    Google Scholar 

  2. Zhu, Z., Gauthier, D. J. & Boyd, R. W. Stored light in an optical fiber via stimulated Brillouin scattering. Science 318, 1748–1750 (2007).

    Article  ADS  Google Scholar 

  3. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  4. Lukin, M. D. Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

    Article  ADS  Google Scholar 

  5. Russell, P. S. Photonic-crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006).

    Article  ADS  Google Scholar 

  6. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

    Article  ADS  Google Scholar 

  7. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

    Article  ADS  Google Scholar 

  8. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  9. Nunn, J. et al. Enhancing multiphoton rates with quantum memories. Phys. Rev. Lett. 110, 133601 (2013).

    Article  ADS  Google Scholar 

  10. Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

    Article  ADS  Google Scholar 

  11. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurasek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  ADS  Google Scholar 

  12. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

    Article  ADS  Google Scholar 

  13. Wu, B. et al. Slow light on a chip via atomic quantum state control. Nature Photon. 4, 776–779 (2010).

    Article  ADS  Google Scholar 

  14. Spillane, S. et al. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett. 100, 233602 (2008).

    Article  ADS  Google Scholar 

  15. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  16. Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nature Photon. 7, 138–141 (2013).

    Article  ADS  Google Scholar 

  17. Ghosh, S. et al. Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber. Phys. Rev. Lett. 97, 023603 (2006).

    Article  ADS  Google Scholar 

  18. Londero, P., Venkataraman, V., Bhagwat, A. R., Slepkov, A. D. & Gaeta, A. L. Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber. Phys. Rev. Lett. 103, 043602 (2009).

    Article  ADS  Google Scholar 

  19. Sprague, M. R. et al. Efficient optical pumping and high optical depth in a hollow-core photonic-crystal fibre for a broadband quantum memory. New J. Phys. 15, 055013 (2013).

    Article  ADS  Google Scholar 

  20. Perrella, C., Light, P. S., Stace, T. M., Benabid, F. & Luiten, A. N. High-resolution optical spectroscopy in a hollow-core photonic crystal fiber. Phys. Rev. A 85, 012518 (2012).

    Article  ADS  Google Scholar 

  21. Nunn, J. et al. Mapping broadband single-photon wave packets into an atomic memory. Phys. Rev. A 75, 011401 (2007).

    Article  ADS  Google Scholar 

  22. Reim, K. F. et al. Towards high-speed optical quantum memories. Nature Photon. 4, 218–221 (2010).

    Article  ADS  Google Scholar 

  23. Reim, K. F. et al. Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107, 053603 (2011).

    Article  ADS  Google Scholar 

  24. Benabid, F. & Roberts, P. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt. 58, 87–124 (2011).

    Article  ADS  Google Scholar 

  25. Slepkov, A. D., Bhagwat, A. R., Venkataraman, V., Londero, P. & Gaeta, A. L. Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers. Opt. Express 16, 18976–18983 (2008).

    Article  ADS  Google Scholar 

  26. Wang, X., Zhu, T., Chen, L. & Bao, X. Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser. Opt. Express 19, 9617–9625 (2011).

    Article  ADS  Google Scholar 

  27. Krapick, S. et al. An efficient integrated two-color source for heralded single photons. New J. Phys. 15, 033010 (2013).

    Article  ADS  Google Scholar 

  28. Bradley, T., McFerran, J. J., Jouin, J., Thomas, P. & Benabid, F. in OSA Technical Digest, CM3I.2 (Optical Society of America, 2013).

    Google Scholar 

  29. Fernandez-Gonzalvo, X. et al. Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. Opt. Express 21, 19473–19487 (2013).

    Article  ADS  Google Scholar 

  30. Benabid, F., Couny, F., Knight, J. C., Birks, T. A. & Russell, P. S. J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

    Article  ADS  Google Scholar 

Download references


The authors thank D. Saunders for comments on the manuscript. The work was supported by the Engineering and Physical Sciences Research Council (EPSRC; EP/J000051/1), the Quantum Interfaces, Sensors, and Communication based on Entanglement Integrating Project (EU IP Q-ESSENCE; 248095), the Air Force Office of Scientific Research: European Office of Aerospace Research & Development (AFOSR EOARD; FA8655-09-1-3020), EU IP SIQS (600645), the Royal Society, the Clarendon Fund (to M.R.S.), St Edmund Hall (to M.R.S.), EU ITN FASTQUAST (to P.S.M.), and an EU Marie-Curie Fellowship (PIIF-GA-2011-300820 to X.-M.J.; PIEF-GA-2012-331859 to W.S.K.).

Author information

Authors and Affiliations



M.R.S. designed the experiment and built it with assistance from D.G.E., P.S.M., W.S.K. and T.F.M.C. A.A. and P.St.J.R. designed and drew the fibre and provided valuable insights. M.R.S. collected and analysed the data. J.N. and M.R.S. performed the comparison to theory. The project was conceived by M.R.S., J.N., X.M.J. and I.A.W. M.R.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to M. R. Sprague.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 440 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sprague, M., Michelberger, P., Champion, T. et al. Broadband single-photon-level memory in a hollow-core photonic crystal fibre. Nature Photon 8, 287–291 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing