Provably secure and practical quantum key distribution over 307 km of optical fibre


Proposed in 1984, quantum key distribution (QKD) allows two users to exchange provably secure keys via a potentially insecure quantum channel1. Since then, QKD has attracted much attention and significant progress has been made both in theory and practice2,3. On the application front, however, the operating distance of practical fibre-based QKD systems is limited to about 150 km (ref. 4), mainly due to the high background noise of practical single-photon detectors5,6 and inefficient finite-key security analysis7,8,9. Here, we present, for the first time, a compact and autonomous QKD system that is capable of distributing provably secure cryptographic keys over 307 km of optical fibre. This is achieved by using semiconductor single-photon detectors with record low background noise10 and a novel finite-key security analysis, which is efficient even for short key lengths. This demonstrates the feasibility of practical long-distance QKD based on standard fibre-optic telecom components.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up of the COW QKD system.
Figure 2: Numerical simulation and experimental results.
Figure 3: System stability.


  1. 1

    Bennett, C. H. & Brassard, G. in Proceedings of IEEE International Conference on Computer, Systems & Signal Processing 175–179 (IEEE 1984).

  2. 2

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  Article  Google Scholar 

  3. 3

    Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    ADS  Article  Google Scholar 

  4. 4

    Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nature Photon. 8, 595–604 (2014).

    ADS  Article  Google Scholar 

  5. 5

    Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nature Photon. 3, 696–705 (2009).

    ADS  Article  Google Scholar 

  6. 6

    Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

    ADS  Article  Google Scholar 

  7. 7

    Scarani, V. & Renner, R. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100, 200501 (2008).

    ADS  Article  Google Scholar 

  8. 8

    Tomamichel, M., Lim, C. C. W., Gisin, N. & Renner, R. Tight finite-key analysis for quantum cryptography. Nature Commun. 3, 634 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Lim, C. C. W., Curty, M., Walenta, N., Xu, F. & Zbinden, H. Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014).

    ADS  Article  Google Scholar 

  10. 10

    Korzh, B., Walenta, N., Lunghi, T., Gisin, N. & Zbinden, H. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency. Appl. Phys. Lett. 104, 081108 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P. & Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photon. 7, 378–381 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Nauerth, S. et al. Air-to-ground quantum communication. Nature Photon. 7, 382–386 (2013).

    ADS  Article  Google Scholar 

  13. 13

    Wang, J.-Y. et al. Direct and full-scale experimental verifications towards ground–satellite quantum key distribution. Nature Photon. 7, 387–393 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Stucki, D., Brunner, N., Gisin, N., Scarani, V. & Zbinden, H. Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87, 194108 (2005).

    ADS  Article  Google Scholar 

  15. 15

    Renner, R. Security of quantum key distribution. Int. J. Quantum Inform. 6, 1–127 (2008).

    Article  Google Scholar 

  16. 16

    Branciard, C., Gisin, N. & Scarani, V. Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography. New J. Phys. 10, 013031 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    Moroder, T. et al. Security of distributed-phase-reference quantum key distribution. Phys. Rev. Lett. 109, 260501 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Walenta, N. et al. A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing. New J. Phys. 16, 013047 (2014).

    ADS  Article  Google Scholar 

  19. 19

    Lucamarini, M. et al. Efficient decoy-state quantum key distribution with quantified security. Opt. Express 21, 24550–24565 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Itzler, M. A. et al. Advances in InGaAsP-based avalanche diode single photon detectors. J. Mod. Opt. 58, 174–200 (2011).

    ADS  Article  Google Scholar 

  21. 21

    Walenta, N. et al. Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature. J. Appl. Phys. 112, 063106 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Tsujikawa, K., Tajima, K. & Zhou, J. Intrinsic loss of optical fibers. Opt. Fiber Technol. 11, 319–331 (2005).

    ADS  Article  Google Scholar 

  23. 23

    Shimizu, K. et al. Performance of long-distance quantum key distribution over 90-km optical links installed in a field environment of Tokyo metropolitan area. J. Lightwave Technol. 32, 141–151 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  24. 24

    Wang, S. et al. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37, 1008–1010 (2012).

    ADS  Article  Google Scholar 

  25. 25

    Stucki, D. et al. High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New J. Phys. 11, 075003 (2009).

    ADS  Article  Google Scholar 

  26. 26

    Takesue, H. et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nature Photon. 1, 343–348 (2007).

    ADS  Article  Google Scholar 

  27. 27

    Liu, Y. et al. Decoy-state quantum key distribution with polarized photons over 200 km. Opt. Express 18, 8587–8594 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Rosenberg, D. et al. Practical long-distance quantum key distribution system using decoy levels. New J. Phys. 11, 045009 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Namekata, N., Takesue, H., Honjo, T., Tokura, Y. & Inoue, S. High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes. Opt. Express 19, 10632–10639 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Yuan, Z. L., Dixon, A. R., Dynes, J. F., Sharpe, A. W. & Shields, A. J. Practical gigahertz quantum key distribution based on avalanche photodiodes. New J. Phys. 11, 045019 (2009).

    ADS  Article  Google Scholar 

Download references


The authors thank N. Walenta for scientific discussions, O. Guinnard and M. Soucarros for technical support and ID Quantique for providing the information reconcilliation software. This work was supported by the Swiss National Centre of Competence in Research ‘Quantum Science and Technology’ (NCCR QSIT) project.

Author information




B.K., R.H., R.T. and H.Z. conceived and designed the experiments. B.K. and R.H. performed the experiments. B.K., C.C.W.L. and H.Z. analysed the data. B.K., C.C.W.L., R.H., N.G., M.J.L., B.S. and D.N. contributed materials/analysis tools. B.K., C.C.W.L., M.J.L., D.N., R.T. and H.Z. wrote the paper.

Corresponding authors

Correspondence to Boris Korzh or Charles Ci Wen Lim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korzh, B., Lim, C., Houlmann, R. et al. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nature Photon 9, 163–168 (2015).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing