Abstract
This Review Article provides an overview of chaos in laser diodes by surveying experimental achievements in the area and explaining the theory behind the phenomenon. The fundamental physics underpinning laser diode chaos and also the opportunities for harnessing it for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient testbed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Harnessing microcomb-based parallel chaos for random number generation and optical decision making
Nature Communications Open Access 31 July 2023
-
High-frequency chaotic bursts in laser diode with optical-feedback
Communications Physics Open Access 16 November 2022
-
Time crystal dynamics in a weakly modulated stochastic time delayed system
Scientific Reports Open Access 22 March 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Maiman, T. H., Hoskins, R. H., D'Haenens, I. J., Asawa, C. K. & Evtuhov, V. Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby. Phys. Rev. 123, 1151–1157 (1961).
Kimura, T. & Otsuka, K. Response of a CW Nd3+:YAG laser to sinusoidal cavity perturbations. IEEE J. Quantum Electron. 6, 764–769 (1970).
Lorenz, E. N. Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963).
Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636–638 (1967).
Li, T. Y. & Yorke, J. A. Period-three implies chaos. Am. Math. Mon. 82, 985 (1975).
Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time-series. Physica D 16, 285–317 (1985).
Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983).
Haken, H. Analogies between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77–78 (1975).
Feigenbaum, M. J. The onset spectrum of turbulence. Phys. Lett. A 74, 375–378 (1979).
Ruelle, D. & Takens, F. On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1979).
Pomeau, Y. & Manneville, P. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980).
Arecchi, F. T., Meucci, R., Puccioni, G. P. & Tredicce, J. R. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217–1220 (1982).
Midavaine, T., Dangoisse, D. & Glorieux, P. Observation of chaos in a frequency-modulated CO2 laser. Phys. Rev. Lett. 55, 1989–1992 (1985).
Weiss, C. O., Abraham, N. B. & Hubner, U. Homoclinic and heteroclinic chaos in a single-mode laser. Phys. Rev. Lett. 61, 1587–1590 (1988).
Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).
Tredicce, J. R., Arecchi, F. T., Lippi, G. L. & Puccioni, G. P. Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2, 173–183 (1985).
Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).
Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos 3rd edn (Springer, 2013).
Luedge, K. Nonlinear Laser Dynamics: From Quantum Dots to Cryptography (Wiley-VCH, 2011).
Mukai, T. & Otsuka, K. New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity. Phys. Rev. Lett. 55, 1711–1714 (1985).
Mork, J., Mark, J. & Tromborg, B. Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. Phys. Rev. Lett. 65, 1999–2002 (1990).
Erneux, T., Gavrielides, A. & Sciamanna, M. Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback. Phys. Rev. A 66, 033809 (2002).
Morikawa, T., Mitsuhashi, Y., Shimada, J. & Kojima, Y. Return-beam-induced oscillations in self-coupled semiconductor lasers. Electron. Lett. 12, 435–436 (1976).
Lenstra, D., Verbeek, B. & Den Boef, A. Coherence collapse in single-mode semiconductor-lasers due to optical feedback. IEEE J. Quantum Electron. 21, 674–679 (1985).
Vicente, R., Dauden, J., Colet, P. & Toral, R. Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop. IEEE J. Quantum Electron. 41, 541–548 (2005).
Heil, T., Fischer, I., Elsaesser, W. & Gavrielides, A. Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. Phys. Rev. Lett. 87, 243901 (2001).
Murakami, A. & Ohtsubo, J. Dynamics of semiconductor lasers with optical feedback from photorefractive phase conjugate mirror. Opt. Rev. 6, 359–364 (1999).
Karsaklian dal Bosco, A., Wolfersberger, D. & Sciamanna, M. Super-harmonic self-pulsations from a time-delayed phase-conjugate optical system. Appl. Phys. Lett. 105, 081101 (2014).
Fischer, A. P. A., Yousefi, M., Lenstra, D., Carter, M. W. & Vemuri, G. Filtered optical feedback induced frequency dynamics in semiconductor lasers. Phys. Rev. Lett. 92, 023901 (2004).
Giudici, M., Giuggioli, L., Green, C. & Tredicce, J. Dynamical behavior of semiconductor lasers with frequency selective optical feedback. Chaos Soliton. Fract. 10, 811–818 (1999).
Hong, Y., Paul, J., Spencer, P. S. & Shore, K. A. The effects of polarization-resolved optical feedback on the relative intensity noise and polarization stability of vertical-cavity surface-emitting lasers. IEEE J. Lightw. Technol. 24, 3210–3216 (2006).
Li, H., Hohl, A., Gavrielides, A., Hou, H. & Choquette, K. D. Stable polarization self-modulation in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 72, 2355–2357 (1998).
Sciamanna, M. et al. Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers. Opt. Lett. 28, 1543–1545 (2003).
Kane, D. M. & Shore, K. A. Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).
Soriano, M. C., Garcia-Ojalvo, J., Mirasso, C. R. & Fischer, I. Complex photonics: dynamics and applications of delay-coupled semiconductor lasers. Rev. Mod. Phys. 85, 421–470 (2013).
Simpson, T. B., Liu, J. M., Gavrielides, A., Kovanis, V. & Alsing, P. M. Period-doubling route to chaos in a semiconductor laser subject to optical injection. Appl. Phys. Lett. 64, 3539–3541 (1994).
Wieczorek, S., Krauskopf, B., Simpson, T. B. & Lenstra, D. The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416, 1–128 (2005).
Qi, X-Q. & Liu, J. M. Photonic microwave applications of the dynamics of semiconductor lasers. IEEE J. Sel. Topics Quantum Electron. 17, 1198–1211 (2011).
Chow, W. W. & Wieczorek, S. Using chaos for remote sensing of laser radiation. Opt. Express 17, 7491–7504 (2009).
Gatare, I., Sciamanna, M., Buesa, J., Thienpont, H. & Panajotov, K. Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection. Appl. Phys. Lett. 88, 101106 (2006).
Wu, D. S., Slavik, R., Marra, G. & Richardson, D. J. Direct selection and amplification of individual narrowly spaced optical comb modes via injection locking: design and characterization. IEEE J. Lightw. Technol. 31, 2287–2295 (2013).
Lee, C. H., Yoon, T-H & Shin, S-Y. Period doubling and chaos in a directly modulated laser diode. Appl. Phys. Lett. 46, 95–97 (1985).
Chen, Y. C., Winful, H. G. & Liu, J. M. Subharmonic bifurcations and irregular pulsing behavior of modulated semiconductor lasers. Appl. Phys. Lett. 47, 208–210 (1985).
Liu, H-F. & Ngai, W. F. Nonlinear dynamics of a directly modulated 1.55 μm InGaAsP distributed feedback semiconductor laser. IEEE J. Quantum Electron. 29, 1668–1675 (1993).
Sciamanna, M., Valle, A., Mégret, P., Blondel, M. & Panajotov, K. Nonlinear polarization dynamics in directly modulated vertical-cavity surface-emitting lasers. Phys. Rev. E 68, 016207 (2003).
Vladimirov, A. G., Pimenov, A. S. & Rachinskii, D. Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser. IEEE J. Quantum Electron. 45, 462–468 (2009).
Bandelow, U., Radzunias, M., Vladimirov A. G., Hüttl, B. & Kaiser, R. 40 GHz mode-locked semiconductor lasers: theory, simulations and experiment. Opt. Quantum Electron. 38, 495–512 (2006).
Viktorov, E. A. et al. Stability of the mode-locked regime in quantum dot lasers. Appl. Phys. Lett. 91, 231116–231118 (2007).
Duan, G. H. & Landais, P. Self-pulsation in multielectrode distributed feedback lasers. IEEE Photon. Technol. Lett. 7, 278–280 (1995).
Mesaritakis, Ch. et al. Chaotic emission and tunable self-sustained pulsations in a two-section Fabry–Perot quantum dot laser. Appl. Phys. Lett. 98, 051104 (2011).
Yamada, M. A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers. IEEE J. Quantum Electron. 29, 1330 (1993).
Kawaguchi, H. A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers. Appl. Phys. Lett. 45, 1264 (1984).
Yamada, M. et al. Experimental characterization of the feedback induced noise in self-pulsing lasers. IEICE T. Electron. E82-C, 2241–2247 (1999).
Tang, S. & Liu, J. M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE J. Quantum Electron. 37, 329–336 (2001).
Lin, F-Y. & Liu, J. M. Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback. IEEE J. Quantum Electron. 39, 562–568 (2003).
Bauer, S. et al. Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys. Rev. E 69, 016206 (2004).
Uchakov, O. V., Korneyev, N., Radzunias, M., Wünsche, H.-J. & Henneberger, F. Excitability of chaotic transients in a semiconductor laser. Europhys. Lett. 79, 30004 (2007).
Wu, J-G. et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Opt. Express 21, 23358–23364 (2013).
Argyris, A., Hamacher, M., Chlouverakis, K. E., Bogris, A. & Syvridis, D. Photonic integrated device for chaos applications in communications. Phys. Rev. Lett. 100, 194101 (2008).
Sunada, S. et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide. Opt. Express 19, 5713–5724 (2011).
Shikora, S., Wünsche, H-J. & Henneberger, F. All-optical noninvasive chaos control of a semiconductor laser. Phys. Rev. E 78, 025202(R) (2008).
San Miguel, M., Feng, Q. & Moloney, J. V. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 52, 1728 (1995).
Virte, M., Panajotov, K., Thienpont, H. & Sciamanna, M. Deterministic polarization chaos from a laser diode. Nature Photon. 7, 60–65 (2013).
Marciante, J. R. & Agrawal, G. P. Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers: experimental results. IEEE Photon. Technol. Lett. 10, 54–56 (1998).
Ikeda, K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30, 257–261 (1979).
Goedgebuer, J. P., Larger, L., Porte, H. & Delorme, F. Chaos in wavelength with a feedback tunable laser diode. Phys. Rev. E 57, 2795–2798 (1998).
Peil, M., Jacquot, M. Chembo, Y., Larger, L. & Erneux, T. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Phys. Rev. E 79, 026208 (2009).
Callan, K. E., Illing, L., Gao, Z., Gauthier, D. J. & Schöll, E. Broadband chaos generated by an optoelectronic oscillator. Phys. Rev. Lett. 104, 113901 (2010).
Colet, P. & Roy, R. Digital communication with synchronized chaotic lasers. Opt. Lett. 19, 2056–2058 (1996).
Pecora, L. & Carroll, T. L. Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990).
Roy, R. & Thornburg, K. S. Jr Experimental synchronization of chaotic lasers. Phys. Rev. Lett. 72, 2009–2012 (1994).
Sivaprakasam, S. & Shore, K. A. Demonstration of optical synchronization of chaotic external-cavity laser diodes. Opt. Lett. 24, 466–468 (1999).
Sivaprakasam, S. & Shore, K. A. Message encoding and decoding using chaotic external-cavity diode lasers. IEEE. J. Quantum Electron. 36, 35–39 (2000).
Spencer, P. S. & Mirasso, C. R. Analysis of optical chaos synchronization in frequency-detuned external-cavity VCSELs. IEEE. J. Quantum Electron. 35, 803–808 (1999).
Murakami, A. & Ohtsubo, J. Synchronization of feedback-induced chaos in semiconductor lasers by optical injection. Phys. Rev. A 65, 033826 (2002).
Sivaprakasam, S. et al. Inverse synchronization in semiconductor laser diodes. Phys. Rev. A 64, 013805 (2001).
Wedekind, I. & Parlitz, U. Experimental observation of synchronization and anti-synchronization of chaotic low-frequency fluctuations in external-cavity semiconductor lasers. Int. J. Bifurcat. Chaos 11, 1141–1147 (2001).
Mirasso, C. R., Colet, P. & Garcia Fernandez, P. Synchronization of chaotic semiconductor lasers: application to encoded communications. IEEE Photon. Technol. Lett. 8, 299–301 (1996).
Ahlers, V., Parlitz, U. & Lauterborn, W. Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers. Phys. Rev. E 58, 7208–7213 (1998).
Liu, Y. et al. Experimental observation of complete chaos synchronization in semiconductor lasers. Appl. Phys. Lett. 80, 4306–4308 (2002).
Masoller, C. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 86, 2782–2785 (2001).
Gonzalez, C. M., Torrent, M. C. & Garcia-Ojalvo, J. M. Controlling the leader laggard dynamics in delay-synchronized lasers. Chaos 17, 033122 (2007).
Fischer, I. et al. Zero lag long range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123902 (2006).
Halle, K. S., Wu, C. W., Itoh, M. & Chua, L. O. Spread spectrum communication through modulation of chaos. Int. J. Bifurcat. Chaos 3, 469–477 (1993).
VanWiggeren, G. D. & Roy, R. Communication with chaotic lasers. Science 279, 1198–1200 (1998).
Parlitz, U., Chua, L. O., Kocarev, L., Halle, K. S. & Shang, A. Transmission of digital signals by chaotic synchronization. Int. J. Bifurcat. Chaos 2, 973–977 (1992).
Heil, T. et al. ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers. IEEE J. Quantum Electron. 38, 1162–1170 (2002).
Liu, J-M., Chen, H-F & Tang, S. Synchronized chaotic optical communications at high bit rates. IEEE J. Quantum Electron. 38, 1184–1196 (2002).
Lee, M. W. & Shore, K. A. Demonstration of a chaotic optical message relay using DFB laser diodes. IEEE Photon. Technol. Lett. 18, 169–171 (2006).
Lee, M. W. & Shore, K. A. Chaotic message broadcasting using DFB laser diodes. Electron. Lett. 40, 614–615 (2004).
Argyris, A. et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438, 343–346 (2005).
Lee, M. W. & Shore, K. A. Two-mode chaos synchronization using a multimode external-cavity laser diode and two single-mode laser diodes. IEEE J. Lightw. Technol. 23, 1068–1073 (2005).
Sciamanna, M., Gatare, I., Locquet, A. & Panajotov, K. Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection. Phys. Rev. E 75, 056213 (2007).
Rontani, D., Sciamanna, M., Locquet, A. & Citrin, D. S. Multiplexed encryption using chaotic systems with multiple stochastic-delayed feedbacks. Phys. Rev. E 80, 066209 (2009).
Rontani, D., Locquet, A., Sciamanna, M. & Citrin, D. S. Spectrally efficient multiplexing of chaotic light. Opt. Lett. 35, 2016–2018 (2010).
Priyadarshi, S., Pierce, I., Hong. Y. & Shore, K. A. Optimal operating conditions for external cavity semiconductor laser optical chaos communication system. Semicond. Sci. Tech. 27, 094002 (2012).
Bu¨nner, M. J., Kittel, A., Parisi, J., Fischer, I. & Elsaesser, W. Estimation of delay times from a delayed optical feedback laser experiment. Europhys. Lett. 42, 353 (1998).
Rontani, D., Locquet, A., Sciamanna, M. & Citrin, D. S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 32, 2960–2962 (2007).
Lin, H., Hong, Y. & Shore, K. A. Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback. IEEE J. Lightw. Technol. 32, 1829–1836 (2014).
Tiana-Alsina, J., Torrent, M. C., Rosso, O. A., Masoller, C. & Garcia-Ojalvo, J. Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback. Phys. Rev A 82, 013819 (2010).
Zunino, L., Rosso, O. A. & Soriano, M. C. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE J. Sel. Topics Quantum Electron. 17, 1250–1257 (2011).
Toomey, J. P. & Kane, D. M. Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. Opt. Express 22, 1713–1725 (2014).
Bandt, Ch & Pompe, B. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002).
Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H. & Zellinger, A. A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675–1680 (2000).
Gabriel, C. et al. A generator for unique quantum random numbers based on vacuum states. Nature Photon. 4, 711–715 (2010).
Uchida, A. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photon. 2, 728–732 (2008).
Hirano, K. et al. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18, 5512–5524 (2010).
Reidler, I., Aviad, Y., Rosenbluh, M. & Kanter, I. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103, 024102 (2009).
Kanter, I., Aviad, Y., Reidler, I., Cohen, E. & Rosenbluh, M. An optical ultrafast random bit generator. Nature Photon. 4, 58–61 (2010).
Oliver, N., Soriano, M., Sukow, D. & Fischer, I. Fast random bit generation using a chaotic laser: approaching the information theoretic limit. IEEE J. Quantum Electron. 49, 910–918 (2013).
Akizawa, T. et al. Fast random number generation with bandwidth-enhanced chaotic semiconductor lasers at 8 x 50 Gb/s. IEEE Photon. Technol. Lett. 24, 1042–1044 (2012).
Harayama, T. et al. Fast nondeterministic random-bit generation using on-chip chaos lasers. Phys. Rev. A 83, 031803(R) (2011).
Argyris, A., Degliannidis, S., Pikasis, E., Bogris, A. & Syvridis, D. Implementation of 140 Gb s−1 true random bit generator based on a chaotic photonic integrated circuit. Opt. Express 18, 18763–18768 (2010).
Virte, M., Mercier, E., Thienpont, H., Panajotov, K. & Sciamanna, M. Physical random bit generation from chaotic solitary laser diode. Opt. Express 22, 17271–17280 (2014).
Li, X-Z. & Chan, S-C. Random bit generation using an optically injected semiconductor laser in chaos with oversampling. Opt. Lett. 37, 2163–2165 (2012).
Myneni, K., Barr, T. A., Reed, B. R., Pethel, S. D. & Corron, N. J. High-precision ranging using a chaotic laser pulse train. Appl. Phys. Lett. 78, 1496–1498 (2001).
Lin, F. Y. & Liu, J. M. Chaotic radar using nonlinear laser dynamics. IEEE J. Quantum Electron. 40, 815–820 (2004).
Wang, Y., Wang, B. & Wang, A. Chaotic correlation optical time domain reflectometer utilizing laser diode. IEEE Photon. Technol. Lett. 20, 1636–1638 (2008).
Sinha, S. & Ditto, W. L. Dynamics based computation. Phys. Rev. Lett. 81, 2156–2159 (1998).
Murali, K., Sinha, S. & Ditto, W. L. Implementation of NOR gate by a chaotic Chua's circuit. Int. J. Bifurcat. Chaos 13, 2669–2672 (2003).
Kim, J. Y., Kang, J. M., Kim, T. K. & Han, S. K. 10 Gbit s−1 all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures. Electron. Lett. 42, 303–304 (2006).
Chlouverakis, K. A. & Adams, M. J. Optoelectronic realisation of NOR logic gate using chaotic two-section lasers. Electron. Lett. 41, 359–360 (2005).
Khurgin, J. B. & Sun, G. Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon emitting diodes. Nature Photon. 8, 468–473 (2014).
Wojcik, A. K., Yu, N., Diehl, L., Capasso, F. & Belyanin, A. Nonlinear dynamics of coupled transverse modes in quantum cascade lasers. J. Mod. Opt. 7, 1892–1899 (2010).
Manju Shrii, M., Senthilkumar, D. V. & Kurths, J. Delay-induced synchrony in complex networks with conjugate coupling. Phys. Rev. E 85, 057203 (2012).
Bonatto, C. et al. Deterministic optical rogue waves. Phys. Rev. Lett. 107, 053901 (2011).
Karsaklian dal Bosco, A., Wolfersberger, D. & Sciamanna, M. Extreme events in time-delayed nonlinear optics. Opt. Lett. 38, 703–705 (2013).
Dudley, J. M., Dias, F., Erkintalo, M. & Genty, G. Instabilities, breathers and rogue waves in optics. Nature Photon. 8, 755–764 (2014).
Verschueren, N., Bortolozzo, U., Clerc., M. G. & Residori, S. Spatiotemporal chaotic localized state in liquid crystal light valve experiments with optical feedback. Phys. Rev. Lett. 110, 104101 (2013).
Tucker, R. S. Green optical communications — part II: energy limitations in transport. IEEE J. Sel. Topics Quantum. Electron. 17, 245–260 (2011).
Hübner, U., Abraham, N. B. & Weiss, C. O. Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Phys. Rev. A 40, 6354–6365 (1989).
Lee, M. W. & Shore, K. A. Chaotic message broadcasting using DFB laser diodes. Electron. Lett. 40, 614–615 (2004).
Nguimdo, R. M. et al. Fast random bits generation based on a single chaotic semiconductor ring laser. Opt. Express 20, 28603–28613 (2012).
Oliver, N., Soriano, M. C., Sukow, D. W. & Fischer, I. Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation. Opt. Lett. 36, 4632–4634 (2011).
Li, X-Z. & Chan, S-C. Heterodyne Random bit generation using an optically injected semiconductor laser in chaos. IEEE J. Quantum Electron. 49, 829–838 (2013).
Acknowledgements
M.S. acknowledges the financial support provided by Fondation Supélec, Conseil Régional de Lorraine, Agence Nationale de la Recherche (ANR) through the project TINO, grant number ANR-12-JS03-005, FEDER through the project PHOTON, and the Inter-University Attraction Pole (IAP) program of BELSPO through the project Photonics@be, grant number IAP P7/35. K.A.S. acknowledges the financial support provided by the Sêr Cymru National Research Network in Advanced Engineering and Materials.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Sciamanna, M., Shore, K. Physics and applications of laser diode chaos. Nature Photon 9, 151–162 (2015). https://doi.org/10.1038/nphoton.2014.326
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2014.326
This article is cited by
-
Harnessing microcomb-based parallel chaos for random number generation and optical decision making
Nature Communications (2023)
-
Power spectrum analysis of time-delayed optoelectronic oscillators with wide and narrow band nonlinear filters
Optical and Quantum Electronics (2023)
-
Theoretical analysis of time delay echoes in multimode semiconductor diode laser with optical feedback
Journal of Optics (2023)
-
Qualitative analysis of a new 6D hyper-chaotic system via bifurcation, the Poincaré notion, and its circuit implementation
Indian Journal of Physics (2023)
-
Mid-infrared hyperchaos of interband cascade lasers
Light: Science & Applications (2022)