Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre

Abstract

Silica-based photonic crystal fibre has proven highly successful for supercontinuum generation, with smooth and flat spectral power densities. However, fused silica glass suffers from strong material absorption in the mid-infrared (>2,500 nm), as well as ultraviolet-related optical damage (solarization), which limits performance and lifetime in the ultraviolet (<380 nm). Supercontinuum generation in silica photonic crystal fibre is therefore only possible between these limits. A number of alternative glasses have been used to extend the mid-infrared performance, including chalcogenides, fluorides and heavy-metal oxides, but none has extended the ultraviolet performance. Here, we describe the successful fabrication (using the stack-and-draw technique) of a ZBLAN photonic crystal fibre with a high air-filling fraction, a small solid core, nanoscale features and near-perfect structure. We also report its use in the generation of ultrabroadband, long-term stable, supercontinua spanning more than three octaves in the spectral range 200–2,500 nm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Measured and calculated ZBLAN PCF parameters and experimental set-up for supercontinuum generation.
Figure 2: Experimental supercontinuum generation in junctions A and B.
Figure 3: Long-term stability during continuous ultraviolet supercontinuum generation from 200 to 400 nm.
Figure 4: Measured and simulated supercontinuum generation in junction A.

References

  1. 1

    Alfano, R. R. & Shapiro, S. L. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594 (1970).

    ADS  Article  Google Scholar 

  2. 2

    Dudley, J. M. & Taylor, J. R. Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  3. 3

    Russell, P. St. J. Photonic-crystal fibres. J. Lightwave Technol. 24, 4729–4749 (2006).

    ADS  Article  Google Scholar 

  4. 4

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    ADS  Article  Google Scholar 

  5. 5

    Dudley, J. M. & Taylor, J. R. Ten years of nonlinear optics in photonic crystal fibre. Nature Photon. 3, 85–90 (2009).

    ADS  Article  Google Scholar 

  6. 6

    Bach, H. & Neuroth, N. The Properties of Optical Glasses (Springer-Verlag, 1995).

    Google Scholar 

  7. 7

    Stark, S. P., Travers, J. C., Russell, P. St. J. Extreme supercontinuum generation to the deep UV. Opt. Lett. 37, 770–772 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Gan, F. Optical properties of fluoride glasses: a review. J. Non-Cryst. Solids 184, 9–203 (1995).

    ADS  Article  Google Scholar 

  9. 9

    Cable, M. & Parker, J. M. High-Performance Glasses (Chapman and Hall, 1992).

    Google Scholar 

  10. 10

    Hill, G. The Cable and Telecommunications Professionals’ Reference: Transport Networks (Focal Press, Elsevier, 2008).

    Google Scholar 

  11. 11

    Harrington, J. A. Infrared Fibers and their Applications (SPIE, The International Society for Optical Engineering, 2004).

    Book  Google Scholar 

  12. 12

    Aasland, S. & Grande, T. Crystallization of ZBLAN glass. J. Am. Ceram. Soc. 79, 2205–22063 (1996).

    Article  Google Scholar 

  13. 13

    Smektala, F. & Matecki, M. Stability study on heating and determination of critical cooling rates of fluorozirconate glasses. J. Non-Cryst. Solids 184, 314–3183 (1995).

    ADS  Article  Google Scholar 

  14. 14

    Ebendorff-Heidepriem, H. et al. Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission. Opt. Lett. 33, 2861–2863 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Xia, C. et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping. Opt. Lett. 31, 2553–2555 (2006).

    ADS  Article  Google Scholar 

  16. 16

    Qin, G. et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber. App. Phys. Lett. 95, 161103 (2009).

    ADS  Article  Google Scholar 

  17. 17

    Heidt, A. M. et al. Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 μm. Opt. Express 21, 24281–24287 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Yang, W., Zhang, B., Yin, K., Zhou, X. & Hou, J. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system. Opt. Express 21, 19732–19742 (2013).

    ADS  Article  Google Scholar 

  19. 19

    Agger, C. et al. Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation. J. Opt. Soc. Am. B 29, 635–645 (2012).

    ADS  Article  Google Scholar 

  20. 20

    Saad, M. Fluoride glass fiber: state of the art. Proc. SPIE 7316, 7316N1–N16 (2009).

    ADS  Google Scholar 

  21. 21

    Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photon. 8, 830–834 (2014).

    ADS  Article  Google Scholar 

  22. 22

    Joly, N. Y. et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys. Rev. Lett. 106, 203901 (2011).

    ADS  Article  Google Scholar 

  23. 23

    Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y. & Russell, P. St. J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF. Opt. Express 21, 10942–10953 (2013).

    ADS  Article  Google Scholar 

  24. 24

    Benabid, F. et al. Fourth-order dispersion mediated solitonic radiations in HC-PCF cladding. Opt. Lett. 33, 2680–2682 (2008).

    ADS  Article  Google Scholar 

  25. 25

    Hilligsøe, K. M. et al. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Opt. Express 12, 1045–1054 (2004).

    ADS  Article  Google Scholar 

  26. 26

    Birks, T. A., Wadsworth, W. J. & Russell, P. St. J. Supercontinuum generation in tapered fibers. Opt. Lett. 25, 1415–1417 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Husakou, A. V. & Herrmann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001).

    ADS  Article  Google Scholar 

  28. 28

    Skryabin, D. V., Luan, F., Knight, J. C. & Russell, P. St. J. Soliton self-frequency shift cancellation in photonic crystal fibers. Science 301, 1705–1708 (2003).

    ADS  Article  Google Scholar 

  29. 29

    Skryabin, D. V. & Yulin, A. V. Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers. Phys. Rev. E 72, 016619 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30

    Marcuse, D. Light Transmission Optics (Van Nostrand-Reinhold, 1982).

    Google Scholar 

  31. 31

    DeSalvo, R., Said, A. A., Hagan, D. J., Stryland, E. W. V. & Sheik-Bahae, M. Infrared to ultraviolet measurements of two-photon absorption and N2 in wide bandgap solids. IEEE J. Quantum Electron. 32, 1324–1333 (1996).

    ADS  Article  Google Scholar 

  32. 32

    Ebendorff-Heidepriem, H. & Monro, T. M. Extrusion of complex preforms for microstructured optical fibers. Opt. Express 15, 15086–15092 (2007).

    ADS  Article  Google Scholar 

  33. 33

    Coulombier, Q. et al. Casting method for producing low-loss chalcogenide microstructured optical fibers. Opt. Express 18, 9107–9112 (2010).

    ADS  Article  Google Scholar 

  34. 34

    Jiang, X. et al. Single-mode hollow-core photonic crystal fiber made from soft glass. Opt. Express 19, 15438–15444 (2011).

    ADS  Article  Google Scholar 

  35. 35

    Shang, H. Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres. Electron. Lett. 17, 603–605 (1981).

    Article  Google Scholar 

  36. 36

    Tzolov, V. P., Fontaine, M., Godbout, N. & Lacroix, S. Nonlinear self-phase-modulation effects: a vectorial first-order perturbation approach. Opt. Lett. 20, 456–458 (1995).

    ADS  Article  Google Scholar 

  37. 37

    Tani, F., Travers, J. C. & Russell, P. St. J. Multimode ultrafast nonlinear optics in optical waveguides: numerical modelling and experiments in Kagomé photonic-crystal fiber. J. Opt. Soc. Am. B 31, 311–320 (2014).

    ADS  Article  Google Scholar 

  38. 38

    Kolesik, M. & Moloney, J. V. Nonlinear optical pulse propagation simulation: from Maxwell's to unidirectional equations. Phys. Rev. E 70, 036604 (2004).

    ADS  Article  Google Scholar 

  39. 39

    Yan, X. et al. Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber. J. Opt. Soc. Am. B 29, 238–243 (2012).

    ADS  Article  Google Scholar 

  40. 40

    Petersen, C. et al. Stimulated Raman scattering in soft glass fluoride fibers. J. Opt. Soc. Am. B 28, 2310–2313 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The ZBLAN glass rods and tubes were purchased from IRphotonics (now part of Thorlabs).

Author information

Affiliations

Authors

Contributions

X.J. and F.B. designed, fabricated and characterized the fibre. X.J. and N.Y.J. carried out the experiments on supercontinuum generation. J.C.T. performed the majority of the theoretical analysis and numerical simulations. P.St.J.R. conceived the project and supervised the work. M.A.F. and G.K.L.W. assisted the work in various ways.

Corresponding author

Correspondence to Xin Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1694 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Joly, N., Finger, M. et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nature Photon 9, 133–139 (2015). https://doi.org/10.1038/nphoton.2014.320

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing