Letter | Published:

A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments

Nature Photonics volume 9, pages 9398 (2015) | Download Citation

Abstract

Circular dichroism in the extreme ultraviolet range is broadly used as a sensitive structural probe of matter, from the molecular photoionization of chiral species1,2,3 to the magnetic properties of solids4. Extending such techniques to the dynamical regime has been a long-standing quest of solid-state physics and physical chemistry, and was only achieved very recently5 thanks to the development of femtosecond circular extreme ultraviolet sources. Only a few large facilities, such as femtosliced synchrotrons6,7 or free-electron lasers8, are currently able to produce such pulses. Here, we propose a new compact and accessible alternative solution: resonant high-order harmonic generation of an elliptical laser pulse. We show that this process, based on a simple optical set-up, delivers bright, coherent, ultrashort, quasi-circular pulses in the extreme ultraviolet. We use this source to measure photoelectron circular dichroism on chiral molecules, opening the route to table-top time-resolved femtosecond and attosecond chiroptical experiments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett. 86, 1187–1190 (2001).

  2. 2.

    Photoelectron circular dichroism in chiral molecules. Adv. Chem. Phys. 138, 267–329 (2008).

  3. 3.

    , , & Vibrationally induced inversion of photoelectron forward–backward asymmetry in chiral molecule photoionization by circularly polarized light. Nature Commun. 4, 2132 (2013).

  4. 4.

    et al. Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658–661 (1993).

  5. 5.

    et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458–461 (2010).

  6. 6.

    et al. Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000).

  7. 7.

    et al. Vacuum ultraviolet circularly polarized coherent femtosecond pulses from laser seeded relativistic electrons. Phys. Rev. ST Accel. Beams 14, 030706 (2011).

  8. 8.

    et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nature Photon. 6, 699–704 (2012).

  9. 9.

    , , , & Measurement of the degree of spatial coherence of high-order harmonics using a Fresnel-mirror interferometer. Phys. Rev. A 61, 043802 (2000).

  10. 10.

    et al. Extreme-ultraviolet high-order harmonic pulses in the microjoule range. Phys. Rev. A 66, 021801 (2002).

  11. 11.

    et al. Full tunability of laser femtosecond high-order harmonics in the ultraviolet spectral range. Appl. Phys. B 108, 43–49 (2012).

  12. 12.

    et al. High harmonic XUV spectral phase interferometry for direct electric-field reconstruction. Phys. Rev. Lett. 94, 173903 (2005).

  13. 13.

    , & The generation, characterization and applications of broadband isolated attosecond pulses. Nature Photon. 8, 178–186 (2014).

  14. 14.

    et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

  15. 15.

    et al. Phase-resolved attosecond near-threshold photoionization of molecular nitrogen. Phys. Rev. A 80, 011404(R) (2009).

  16. 16.

    , & Attosecond molecular dynamics: fact or fiction? Nature Photon. 8, 195–204 (2014).

  17. 17.

    Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes. J. Phys. D 38, R253–R267 (2005).

  18. 18.

    et al. Polarization control of high order harmonics in the EUV photon energy range. Opt. Express 19, 4346–4356 (2011).

  19. 19.

    , , & Influence of ellipticity on harmonic generation. Phys. Rev. A 48, R3437–R3440 (1993).

  20. 20.

    , , & Polarization of high-order harmonics. Phys. Rev. A 55, 1314–1324 (1997).

  21. 21.

    , & Generation of circularly polarized high-order harmonics by two-color coplanar field mixing. Phys. Rev. A 61, 063403 (2000).

  22. 22.

    & Single circularly polarized attosecond pulse generation by intense few cycle elliptically polarized laser pulses and terahertz fields from molecular media. Phys. Rev. Lett. 110, 023003 (2013).

  23. 23.

    , , , & Spin angular momentum and tunable polarization in high-harmonic generation. Nature Photon. 8, 543–549 (2014).

  24. 24.

    et al. Attosecond circular dichroism spectroscopy of polyatomic molecules. Phys. Rev. Lett. 102, 063601 (2009).

  25. 25.

    et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. Phys. Rev. Lett. 102, 073902 (2009).

  26. 26.

    et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phys. Rev. Lett. 104, 213601 (2010).

  27. 27.

    et al. Energy-dependent valence photoelectron spectra of SF6: ab initio calculations and measurements. J. Electron Spectrosc. Rel. Phenom. 94, 163–179 (1998).

  28. 28.

    et al. Multi-channel static and dynamical resonant high-order harmonic generation. Nature Commun. 5, 5952 (2014).

  29. 29.

    et al. Coherent phase-matched VUV generation by field-controlled bound states. Nature Photon. 8, 437–441 (2014).

  30. 30.

    , & A method for measuring polarization in the vacuum ultraviolet. Appl. Opt. 4, 1005–1010 (1965).

  31. 31.

    et al. High-harmonic transient grating spectroscopy of SF6 molecular vibrations. J. Phys. B 47, 124023 (2014).

  32. 32.

    et al. Scaling of high-order harmonic efficiencies with visible wavelength drivers: a route to efficient extreme ultraviolet sources. Appl. Phys. Lett. 97, 061107 (2010).

  33. 33.

    , , , & Determination of chiral asymmetries in the valence photoionization of camphor enantiomers by photoelectron imaging using tunable circularly polarized light. J. Chem. Phys. 125, 114309 (2006).

  34. 34.

    , , & A valence photoelectron imaging investigation of chiral asymmetry in the photoionization of fenchone and camphor. Chem. Phys. Chem. 9, 475–483 (2008).

  35. 35.

    et al. Direct determination of absolute molecular stereochemistry in gas phase by Coulomb explosion imaging. Science 341, 1096–1100 (2013).

  36. 36.

    et al. Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 51, 5001–5005 (2012).

  37. 37.

    & Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys. Chem. Chem. Phys. 16, 856–871 (2014).

Download references

Acknowledgements

The authors thank R. Bouillaud and L. Merzeau for technical assistance, and M. Mairesse for mechanical supplies. The authors acknowledge financial support from the Conseil Regional d'Aquitaine (20091304003 ATTOMOL and COLA 2 no. 2.1.3-09010502), l'Agence Nationale pour la Recherche (ANR-14-CE32-0014 MISFITS and ANR-14-CE32-0010 XTASE), the European Union (Laserlab-Europe II no. 228334 and EU-FP7 284464) and the RTRA Triangle de la Physique (Attocontrol).

Author information

Affiliations

  1. Université de Bordeaux – CNRS – CEA, CELIA, UMR5107, F33405 Talence, France

    • A. Ferré
    • , C. Handschin
    • , M. Dumergue
    • , F. Burgy
    • , A. Comby
    • , D. Descamps
    • , B. Fabre
    • , L. Merceron
    • , E. Mével
    • , S. Petit
    • , B. Pons
    • , V. Blanchet
    •  & Y. Mairesse
  2. Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France

    • G. A. Garcia
    •  & L. Nahon
  3. CEA, IRAMIS, Lasers, Interactions and Dynamics Laboratory - LIDyL, CEA-SACLAY, F-91191 Gif-sur-Yvette, France

    • R. Géneaux
    • , S. Weber
    •  & T. Ruchon
  4. Université de Toulouse – CNRS, LCAR-IRSAMC, Toulouse, France

    • D. Staedter

Authors

  1. Search for A. Ferré in:

  2. Search for C. Handschin in:

  3. Search for M. Dumergue in:

  4. Search for F. Burgy in:

  5. Search for A. Comby in:

  6. Search for D. Descamps in:

  7. Search for B. Fabre in:

  8. Search for G. A. Garcia in:

  9. Search for R. Géneaux in:

  10. Search for L. Merceron in:

  11. Search for E. Mével in:

  12. Search for L. Nahon in:

  13. Search for S. Petit in:

  14. Search for B. Pons in:

  15. Search for D. Staedter in:

  16. Search for S. Weber in:

  17. Search for T. Ruchon in:

  18. Search for V. Blanchet in:

  19. Search for Y. Mairesse in:

Contributions

C.H. built the VMIS. F.B., D.D. and S.P. operated the laser system. A.F., E.M., V.B. and Y.M. built the high-harmonic beamline. A.F., M.D., A.C., R.G., L.M., D.S., S.W., T.R., V.B. and Y.M. carried out the measurements. A.F. and Y.M. analysed the optical polarimetry measurements. G.A.G. and L.N. inverted the VMIS images and extracted and rationalized the PECD data. B.P. performed the theoretical calculations. Y.M. designed the manuscript. All authors contributed to the interpretation of the data and writing of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Y. Mairesse.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2014.314

Further reading