Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments

Abstract

Circular dichroism in the extreme ultraviolet range is broadly used as a sensitive structural probe of matter, from the molecular photoionization of chiral species1,2,3 to the magnetic properties of solids4. Extending such techniques to the dynamical regime has been a long-standing quest of solid-state physics and physical chemistry, and was only achieved very recently5 thanks to the development of femtosecond circular extreme ultraviolet sources. Only a few large facilities, such as femtosliced synchrotrons6,7 or free-electron lasers8, are currently able to produce such pulses. Here, we propose a new compact and accessible alternative solution: resonant high-order harmonic generation of an elliptical laser pulse. We show that this process, based on a simple optical set-up, delivers bright, coherent, ultrashort, quasi-circular pulses in the extreme ultraviolet. We use this source to measure photoelectron circular dichroism on chiral molecules, opening the route to table-top time-resolved femtosecond and attosecond chiroptical experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elliptical resonant HHG in argon.
Figure 2: Optical polarimetry measurements of HHG in SF6.
Figure 3: Experimental set-up and principle of the PECD measurement.
Figure 4: Photoelectron circular dichroism in fenchone.

Similar content being viewed by others

References

  1. Böwering, N. et al. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett. 86, 1187–1190 (2001).

    Article  ADS  Google Scholar 

  2. Powis, I. Photoelectron circular dichroism in chiral molecules. Adv. Chem. Phys. 138, 267–329 (2008).

    Google Scholar 

  3. Garcia, G. A., Nahon, L., Daly, S. & Powis, I. Vibrationally induced inversion of photoelectron forward–backward asymmetry in chiral molecule photoionization by circularly polarized light. Nature Commun. 4, 2132 (2013).

    Article  ADS  Google Scholar 

  4. Stohr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658–661 (1993).

    Article  ADS  Google Scholar 

  5. Boeglin, C. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458–461 (2010).

    Article  ADS  Google Scholar 

  6. Schoenlein, R. W. et al. Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000).

    Article  ADS  Google Scholar 

  7. Čutić, N. et al. Vacuum ultraviolet circularly polarized coherent femtosecond pulses from laser seeded relativistic electrons. Phys. Rev. ST Accel. Beams 14, 030706 (2011).

    Article  ADS  Google Scholar 

  8. Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nature Photon. 6, 699–704 (2012).

    Article  ADS  Google Scholar 

  9. Le Déroff, L., Salières, P., Carré, B., Joyeux, D. & Phalippou, D. Measurement of the degree of spatial coherence of high-order harmonics using a Fresnel-mirror interferometer. Phys. Rev. A 61, 043802 (2000).

    Article  ADS  Google Scholar 

  10. Hergott, J.-F. et al. Extreme-ultraviolet high-order harmonic pulses in the microjoule range. Phys. Rev. A 66, 021801 (2002).

    Article  ADS  Google Scholar 

  11. Mahieu, B. et al. Full tunability of laser femtosecond high-order harmonics in the ultraviolet spectral range. Appl. Phys. B 108, 43–49 (2012).

    Article  ADS  Google Scholar 

  12. Mairesse, Y. et al. High harmonic XUV spectral phase interferometry for direct electric-field reconstruction. Phys. Rev. Lett. 94, 173903 (2005).

    Article  ADS  Google Scholar 

  13. Chini, M., Zhao, K. & Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nature Photon. 8, 178–186 (2014).

    Article  ADS  Google Scholar 

  14. Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    Article  ADS  Google Scholar 

  15. Haessler, S. et al. Phase-resolved attosecond near-threshold photoionization of molecular nitrogen. Phys. Rev. A 80, 011404(R) (2009).

    Article  ADS  Google Scholar 

  16. Lépine, F., Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: fact or fiction? Nature Photon. 8, 195–204 (2014).

    Article  ADS  Google Scholar 

  17. Bauer, M. Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes. J. Phys. D 38, R253–R267 (2005).

    Article  ADS  Google Scholar 

  18. Vodungbo, B. et al. Polarization control of high order harmonics in the EUV photon energy range. Opt. Express 19, 4346–4356 (2011).

    Article  ADS  Google Scholar 

  19. Budil, K. S., Salières, P., Perry, M. D. & L'Huillier, A. Influence of ellipticity on harmonic generation. Phys. Rev. A 48, R3437–R3440 (1993).

    Article  ADS  Google Scholar 

  20. Antoine, P., Carré, B., L'Huillier, A. & Lewenstein, M. Polarization of high-order harmonics. Phys. Rev. A 55, 1314–1324 (1997).

    Article  ADS  Google Scholar 

  21. Milĕsević, D. B., Becker, W. & Kopold, R. Generation of circularly polarized high-order harmonics by two-color coplanar field mixing. Phys. Rev. A 61, 063403 (2000).

    Article  ADS  Google Scholar 

  22. Yuan, K.-J. & Bandrauk, A. D. Single circularly polarized attosecond pulse generation by intense few cycle elliptically polarized laser pulses and terahertz fields from molecular media. Phys. Rev. Lett. 110, 023003 (2013).

    Article  ADS  Google Scholar 

  23. Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nature Photon. 8, 543–549 (2014).

    Article  Google Scholar 

  24. Smirnova, O. et al. Attosecond circular dichroism spectroscopy of polyatomic molecules. Phys. Rev. Lett. 102, 063601 (2009).

    Article  ADS  Google Scholar 

  25. Zhou, X. et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. Phys. Rev. Lett. 102, 073902 (2009).

    Article  ADS  Google Scholar 

  26. Mairesse, Y. et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phys. Rev. Lett. 104, 213601 (2010).

    Article  ADS  Google Scholar 

  27. Yang, L. et al. Energy-dependent valence photoelectron spectra of SF6: ab initio calculations and measurements. J. Electron Spectrosc. Rel. Phenom. 94, 163–179 (1998).

    Article  Google Scholar 

  28. Ferré, A. et al. Multi-channel static and dynamical resonant high-order harmonic generation. Nature Commun. 5, 5952 (2014).

    Google Scholar 

  29. Chini, M. et al. Coherent phase-matched VUV generation by field-controlled bound states. Nature Photon. 8, 437–441 (2014).

    Article  ADS  Google Scholar 

  30. Rabinovitch, K., Canfield, L. R. & Madden, R. P. A method for measuring polarization in the vacuum ultraviolet. Appl. Opt. 4, 1005–1010 (1965).

    Article  ADS  Google Scholar 

  31. Ferré, A. et al. High-harmonic transient grating spectroscopy of SF6 molecular vibrations. J. Phys. B 47, 124023 (2014).

    Article  ADS  Google Scholar 

  32. Falcão-Filho, E. L. et al. Scaling of high-order harmonic efficiencies with visible wavelength drivers: a route to efficient extreme ultraviolet sources. Appl. Phys. Lett. 97, 061107 (2010).

    Article  ADS  Google Scholar 

  33. Nahon, L., Garcia, G. A., Harding, C. J., Mikajlo, E. & Powis, I. Determination of chiral asymmetries in the valence photoionization of camphor enantiomers by photoelectron imaging using tunable circularly polarized light. J. Chem. Phys. 125, 114309 (2006).

    Article  ADS  Google Scholar 

  34. Powis, I., Harding, C. J., Garcia, G. A. & Nahon, L. A valence photoelectron imaging investigation of chiral asymmetry in the photoionization of fenchone and camphor. Chem. Phys. Chem. 9, 475–483 (2008).

    Article  Google Scholar 

  35. Pitzer, M. et al. Direct determination of absolute molecular stereochemistry in gas phase by Coulomb explosion imaging. Science 341, 1096–1100 (2013).

    Article  ADS  Google Scholar 

  36. Lux, C. et al. Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 51, 5001–5005 (2012).

    Article  Google Scholar 

  37. Janssen, M. H. M. & Powis, I. Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys. Chem. Chem. Phys. 16, 856–871 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Bouillaud and L. Merzeau for technical assistance, and M. Mairesse for mechanical supplies. The authors acknowledge financial support from the Conseil Regional d'Aquitaine (20091304003 ATTOMOL and COLA 2 no. 2.1.3-09010502), l'Agence Nationale pour la Recherche (ANR-14-CE32-0014 MISFITS and ANR-14-CE32-0010 XTASE), the European Union (Laserlab-Europe II no. 228334 and EU-FP7 284464) and the RTRA Triangle de la Physique (Attocontrol).

Author information

Authors and Affiliations

Authors

Contributions

C.H. built the VMIS. F.B., D.D. and S.P. operated the laser system. A.F., E.M., V.B. and Y.M. built the high-harmonic beamline. A.F., M.D., A.C., R.G., L.M., D.S., S.W., T.R., V.B. and Y.M. carried out the measurements. A.F. and Y.M. analysed the optical polarimetry measurements. G.A.G. and L.N. inverted the VMIS images and extracted and rationalized the PECD data. B.P. performed the theoretical calculations. Y.M. designed the manuscript. All authors contributed to the interpretation of the data and writing of the manuscript.

Corresponding author

Correspondence to Y. Mairesse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferré, A., Handschin, C., Dumergue, M. et al. A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments. Nature Photon 9, 93–98 (2015). https://doi.org/10.1038/nphoton.2014.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing