Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

Abstract

The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links1. Quantum memories for light2 are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light–matter interface brings fibre-based quantum networks one step closer to reality.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Storage of telecom-wavelength photons in a broadband AFC memory.
Figure 3: Reconstructed density matrices.

References

  1. Kimble, H. J. The quantum Internet. Nature 453, 1023–1030 (2008).

    ADS  Article  Google Scholar 

  2. Lvovsky, A. I., Tittel, W. & Sanders, B. C. Optical quantum memory. Nature Photon. 3, 706–714 (2009).

    ADS  Article  Google Scholar 

  3. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Article  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  Article  Google Scholar 

  5. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

    ADS  Article  Google Scholar 

  6. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 3380 (2011).

    Article  Google Scholar 

  7. Bussières, F. et al. Prospective applications of optical quantum memories. J. Mod. Opt. 60, 1519–1537 (2013).

    ADS  MathSciNet  Article  Google Scholar 

  8. Lauritzen, B. et al. Telecom-wavelength solid-state memory at the single photon level. Phys. Rev. Lett. 104, 080502 (2010).

    ADS  Article  Google Scholar 

  9. Dajczgewand, J., Le Gouët, J. L., Louchet-Chauvet, A. & Chanelière, T. Large efficiency at telecom wavelength for optical quantum memories. Opt. Lett. 39, 2711–2714 (2014).

    ADS  Article  Google Scholar 

  10. Bussières, F. et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nature Photon. 8, 775–778 (2014).

    ADS  Article  Google Scholar 

  11. Maring, N. et al. Storage of up-converted telecom photons in a doped crystal. New J. Phys. 16, 113021 (2014).

    Article  Google Scholar 

  12. Sprague, M. R. et al. Broadband single-photon-level memory in a hollow-core photonic crystal fibre. Nature Photon. 8, 287–291 (2014).

    ADS  Article  Google Scholar 

  13. De Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light matter interface at the single-photon level. Nature 456, 773–777 (2008).

    ADS  Article  Google Scholar 

  14. Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).

    ADS  Article  Google Scholar 

  15. Afzelius, M. & Simon, C. Impedance-matched cavity quantum memory. Phys. Rev. A 82, 022310 (2010).

    ADS  Article  Google Scholar 

  16. Moiseev, S. A., Andrianov, S. N. & Gubaidullin, F. F. Efficient multimode quantum memory based on photon echo in an optimal QED cavity. Phys. Rev. A 82, 022311 (2010).

    ADS  Article  Google Scholar 

  17. Afzelius, M. et al. Demonstration of atomic frequency comb memory for light with spin–wave storage. Phys. Rev. Lett. 104, 040503 (2010).

    ADS  Article  Google Scholar 

  18. Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 513–518 (2011).

    ADS  Article  Google Scholar 

  19. Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–512 (2011).

    ADS  Article  Google Scholar 

  20. Lauritzen, B. et al. Approaches for a quantum memory at telecommunication wavelengths. Phys. Rev. A 83, 12318 (2011).

    ADS  Article  Google Scholar 

  21. Hastings-Simon, S. R. et al. Zeeman-level lifetimes in Er3+:Y2SiO5 . Phys. Rev. B 78, 085410 (2008).

    ADS  Article  Google Scholar 

  22. Altepeter, J. B., Jeffrey, E. R. & Kwiat, P. G. Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).

    ADS  Article  Google Scholar 

  23. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    ADS  Article  Google Scholar 

  24. Hastings-Simon, S. R. et al. Controlled Stark shifts in Er3+-doped crystalline and amorphous waveguides for quantum state storage. Opt. Commun. 266, 716–719 (2006).

    ADS  Article  Google Scholar 

  25. Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014).

    ADS  Article  Google Scholar 

  26. Guha, S. et al. Exact analysis of a practical quantum repeater architecture with noisy elements. Preprint at http://lanl.arXiv.org/abs/arXiv:1404.7183 (2014).

  27. Nunn, J. et al. Enhancing multiphoton rates with quantum memories. Phys. Rev. Lett. 110, 133601 (2013).

    ADS  Article  Google Scholar 

  28. Saglamyurek, E. et al. An integrated processor for photonic quantum states using a broadband light–matter interface. New J. Phys. 16, 065019 (2014).

    ADS  Article  Google Scholar 

  29. O'Brien, C., Lauk, N., Blum, S., Morigi, G. & Fleischhauer, M. Interfacing superconducting qubits and telecom photons via a rare-earth doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

    ADS  Article  Google Scholar 

  30. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nature Photon. 7, 210–214 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

E.S., J.J., D.O. and W.T. thank C. Thiel, N. Sinclair, M. Hedges, T. Lutz, K. Heshami, M. Grimau Puigiber, L. Giner, A. Croteau, C. La Mela and V. Kiselyov for technical help and/or discussions, and acknowledge funding through Alberta Innovates Technology Futures (AITF) and the National Science and Engineering Research Council of Canada (NSERC). W.T. is a senior fellow of the Canadian Institute for Advanced Research (CIFAR). V.B.V. and S.W.N. acknowledge partial funding for detector development from the Defense Advanced Research Projects Agency (DARPA) Information in a Photon (InPho) programme. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Contributions

The SNSPDs were fabricated and tested by V.B.V., M.D.S., F.M. and S.W.N. at the National Institute of Standards and Technology and Jet Propulsion Laboratory. All measurements were performed by E.S. and J.J., with help from D.O. The manuscript was written by W.T., E.S. and D.O.

Corresponding author

Correspondence to Wolfgang Tittel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 367 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saglamyurek, E., Jin, J., Verma, V. et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nature Photon 9, 83–87 (2015). https://doi.org/10.1038/nphoton.2014.311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.311

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing