Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics

Abstract

Circularly-polarized extreme ultraviolet and X-ray radiation is useful for analysing the structural, electronic and magnetic properties of materials. To date, such radiation has only been available at large-scale X-ray facilities such as synchrotrons. Here, we demonstrate the first bright, phase-matched, extreme ultraviolet circularly-polarized high harmonics source. The harmonics are emitted when bi-chromatic counter-rotating circularly-polarized laser pulses field-ionize a gas in a hollow-core waveguide. We use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of Co. We show that phase-matching of circularly-polarized harmonics is unique and robust, producing a photon flux comparable to linearly polarized high harmonic sources. This work represents a critical advance towards the development of table-top systems for element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pump symmetry and phase-matching condition for circularly-polarized HHG.
Figure 2: Experimental apparatus.
Figure 3: Generation of bright circularly-polarized harmonics.
Figure 4: Co XMCD.

Similar content being viewed by others

References

  1. Böwering, N. et al. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett. 86, 1187–1190 (2001).

    Article  ADS  Google Scholar 

  2. Travnikova, O. et al. Circularly polarized X rays: another probe of ultrafast molecular decay dynamics. Phys. Rev. Lett. 105, 233001 (2010).

    Article  ADS  Google Scholar 

  3. Gierz, I., Lindroos, M., Höchst, H., Ast, C. R. & Kern, K. Graphene sublattice symmetry and isospin determined by circular dichroism in angle-resolved photoemission spectroscopy. Nano Lett. 12, 3900–3904 (2012).

    Article  ADS  Google Scholar 

  4. Xu, S.-Y. et al. Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator. Nature Phys. 8, 616–622 (2012).

    Article  ADS  Google Scholar 

  5. Liu, Y., Bian, G., Miller, T. & Chiang, T.-C. Visualizing electronic chirality and Berry phases in graphene systems using photoemission with circularly polarized light. Phys. Rev. Lett. 107, 166803 (2011).

    Article  ADS  Google Scholar 

  6. Schütz, G., Knülle, M. & Ebert, H. Magnetic circular X-ray dichroism and its relation to local moments. Phys. Scr. 1993, 302 (1993).

    Article  Google Scholar 

  7. Stöhr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658 (1993).

    Article  ADS  Google Scholar 

  8. Fischer, P. et al. Magnetic domain imaging with a transmission X-ray microscope. J. Magn. Magn. Mater. 198–199, 624–627 (1999).

    Article  ADS  Google Scholar 

  9. Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    Article  ADS  Google Scholar 

  10. Boeglin, C. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458–461 (2010).

    Article  ADS  Google Scholar 

  11. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    Article  ADS  Google Scholar 

  12. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  13. López-Flores, V. et al. Time-resolved X-ray magnetic circular dichroism study of ultrafast demagnetization in a CoPd ferromagnetic film excited by circularly polarized laser pulse. Phys. Rev. B 86, 014424 (2012).

    Article  ADS  Google Scholar 

  14. Graves, C. E. et al. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nature Mater. 12, 293–298 (2013).

    Article  ADS  Google Scholar 

  15. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  16. Seaberg, M. D. et al. Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. Opt. Express 19, 22470–22479 (2011).

    Article  ADS  Google Scholar 

  17. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  18. Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

    Article  ADS  Google Scholar 

  19. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nature Mater. 9, 26–30 (2010).

    Article  ADS  Google Scholar 

  20. Li, W. et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008).

    Article  ADS  Google Scholar 

  21. Sandhu, A. S. et al. Observing the creation of electronic Feshbach resonances in soft X-ray-induced O2 dissociation. Science 322, 1081–1085 (2008).

    Article  ADS  Google Scholar 

  22. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article  ADS  Google Scholar 

  23. Salières, P. et al. Frequency-domain interferometry in the XUV with high-order harmonics. Phys. Rev. Lett. 83, 5483–5486 (1999).

    Article  ADS  Google Scholar 

  24. La-O-Vorakiat, C. et al. Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray source. Phys. Rev. Lett. 103, 257402 (2009).

    Article  ADS  Google Scholar 

  25. Mathias, S. et al. Probing the timescale of the exchange interaction in a ferromagnetic alloy. Proc. Natl Acad. Sci. USA 109, 4792–4797 (2012).

    Article  ADS  Google Scholar 

  26. Turgut, E. et al. Controlling the competition between optically induced ultrafast spin-flip scattering and spin transport in magnetic multilayers. Phys. Rev. Lett. 110, 197201 (2013).

    Article  ADS  Google Scholar 

  27. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  28. Möller, M. et al. Dependence of high-order-harmonic-generation yield on driving-laser ellipticity. Phys. Rev. A 86, 011401 (2012).

    Article  ADS  Google Scholar 

  29. Weihe, F. A. et al. Polarization of high-intensity high-harmonic generation. Phys. Rev. A 51, R3433–R3436 (1995).

    Article  ADS  Google Scholar 

  30. Alon, O. E., Averbukh, V. & Moiseyev, N. Selection rules for the high harmonic generation spectra. Phys. Rev. Lett. 80, 3743–3746 (1998).

    Article  ADS  Google Scholar 

  31. Yuan, K.-J. & Bandrauk, A. D. Circularly polarized molecular high-order harmonic generation in H2+ with intense laser pulses and static fields. Phys. Rev. A 83, 063422 (2011).

    Article  ADS  Google Scholar 

  32. Mauger, F., Bandrauk, A. D., Kamor, A., Uzer, T. & Chandre, C. Quantum-classical correspondence in circularly polarized high harmonic generation. J. Phys. B Atom. Mol. Opt. Phys. 47, 041001 (2014).

    Article  ADS  Google Scholar 

  33. Vodungbo, B. et al. Polarization control of high order harmonics in the EUV photon energy range. Opt. Express 19, 4346–4356 (2011).

    Article  ADS  Google Scholar 

  34. Liu, L. Z., O'Keeffe, K. & Hooker, S. M. Optical rotation quasi-phase-matching for circularly polarized high harmonic generation. Opt. Lett. 37, 2415–2417 (2012).

    Article  ADS  Google Scholar 

  35. Fleischer, A., Sidorenko, P. & Cohen, O. Generation of high-order harmonics with controllable elliptical polarization. Opt. Lett. 38, 223–225 (2013).

    Article  ADS  Google Scholar 

  36. Yuan, K.-J. & Bandrauk, A. D. Single circularly polarized attosecond pulse generation by intense few cycle elliptically polarized laser pulses and terahertz fields from molecular media. Phys. Rev. Lett. 110, 023003 (2013).

    Article  ADS  Google Scholar 

  37. Milošević, D. B., Becker, W. & Kopold, R. Generation of circularly polarized high-order harmonics by two-color coplanar field mixing. Phys. Rev. A 61, 063403 (2000).

    Article  ADS  Google Scholar 

  38. Milošević, D. B. & Becker, W. Attosecond pulse trains with unusual nonlinear polarization. Phys. Rev. A 62, 011403 (2000).

    Article  ADS  Google Scholar 

  39. Bandrauk, A. D. & Lu, H. Controlling harmonic generation in molecules with intense laser and static magnetic fields: orientation effects. Phys. Rev. A 68, 043408 (2003).

    Article  ADS  Google Scholar 

  40. Zuo, T. & Bandrauk, A. D. High-order harmonic generation in intense laser and magnetic fields. J. Nonlinear Opt. Phys. Mater. 04, 533–546 (1995).

    Article  ADS  Google Scholar 

  41. Long, S., Becker, W. & McIver, J. K. Model calculations of polarization-dependent two-color high-harmonic generation. Phys. Rev. A 52, 2262–2278 (1995).

    Article  ADS  Google Scholar 

  42. Eichmann, H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995).

    Article  ADS  Google Scholar 

  43. Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nature Photon. 8, 543–549 (2014).

    Article  ADS  Google Scholar 

  44. Cohen, O., Popmintchev, T., Gaudiosi, D. M., Murnane, M. M. & Kapteyn, H. C. Unified microscopic–macroscopic formulation of high-order difference-frequency mixing in plasmas. Phys. Rev. Lett. 98, 043903 (2007).

    Article  ADS  Google Scholar 

  45. Popmintchev, T. et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl Acad. Sci. USA 106, 10516–10521 (2009).

    Article  ADS  Google Scholar 

  46. Oppeneer, P. M. in Handbook of Magnetic Materials Vol. 13 (ed. Buschow, K. H. J.) 229–422 (Elsevier, 2001).

    Google Scholar 

  47. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. Atom. Data Nucl. Data Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

  48. Valencia, S. et al. Faraday rotation spectra at shallow core levels: 3p edges of Fe, Co, and Ni. New J. Phys. 8, 254 (2006).

    Article  ADS  Google Scholar 

  49. Xie, X. et al. Internal momentum state mapping using high harmonic radiation. Phys. Rev. Lett. 101, 033901 (2008).

    Article  ADS  Google Scholar 

  50. Zeitoun, P. et al. High-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 431, 426–429 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the USA–Israel Binational Science Foundation (BSF). The Technion group was supported by the Israel Science Foundation (grant no. 1225/14) and the Israeli Center of Research Excellence ‘circle of light’ supported by the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation. The experiment was carried out in JILA. O.K. and O.C acknowledge the warm hospitality in JILA. The JILA and NIST authors acknowledge funding from the US Department of Energy Office of Basic Energy Sciences (award no. DE-SC0002002). JILA also acknowledges funding from the Physics Frontiers Center Program and from an AFOSR DURIP award for the laser system used for this work. P.G. acknowledges support from the Deutsche Forschungsgemeinschaft (no. GR 4234/1-1). R.K. acknowledges the Swedish Research Council (VR) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

O.C., M.M. and H.K. conceived and supervised the project. O.K., P.G., E.T. and A.F. designed the experimental set-up. O.K., P.G., E.T., R.K., D.Z., T.P. and D.P. constructed the experimental set-up and conducted the experiment. O.K. and P.G. analysed the data with input from other authors. O.K. developed the theory and carried out the numerical simulations. O.K., P.G. and O.C. wrote the manuscript with input from all other authors.

Corresponding authors

Correspondence to Ofer Kfir or Oren Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1073 kb)

Supplementary information

Supplementary movie (MP4 1589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kfir, O., Grychtol, P., Turgut, E. et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nature Photon 9, 99–105 (2015). https://doi.org/10.1038/nphoton.2014.293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing