Review Article | Published:

Attosecond metrology: from electron capture to future signal processing

Nature Photonics volume 8, pages 205213 (2014) | Download Citation

Abstract

The accurate measurement of time lies at the heart of experimental science, and is relevant to everyday life. Extending chronoscopy to ever shorter timescales has been the key to gaining real-time insights into microscopic phenomena, ranging from vital biological processes to the dynamics underlying high technologies. The generation of isolated attosecond pulses in 2001 allowed the fastest of all motions outside the nucleus — electron dynamics in atomic systems — to be captured. Attosecond metrology has provided access to several hitherto immeasurably fast electron phenomena in atoms, molecules and solids. The fundamental importance of electron processes for the physical and life sciences, technology and medicine has rendered the young field of attosecond science one of the most dynamically expanding research fields of the new millennium. Here, we review the basic concepts underlying attosecond measurement and control techniques. Among their many potential applications, we focus on the exploration of the fundamental speed limit of electronic signal processing. This endeavour relies on ultimate-speed electron metrology, as provided by attosecond technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & August Toepler — the first who visualized shock waves. Shock Waves 5, 1–18 (1995).

  2. 2.

    & Disparition instantanée du phénomène de Kerr. Compt. Rend. (Paris) 129, 206–208 (1899).

  3. 3.

    & Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

  4. 4.

    Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

  5. 5.

    , , & Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

  6. 6.

    , , & Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

  7. 7.

    Nonlinear optics 2nd edn (Academic, 2003).

  8. 8.

    & Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale 2nd edn (Academic, 2006).

  9. 9.

    , , & Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987).

  10. 10.

    & Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

  11. 11.

    , , & Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201–203 (1994).

  12. 12.

    Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

  13. 13.

    , , , & Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979).

  14. 14.

    et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

  15. 15.

    et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

  16. 16.

    , & III. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993).

  17. 17.

    & High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993).

  18. 18.

    et al. Attosecond metrology. Nature 414, 509–513 (2001).

  19. 19.

    & The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813–855 (2004).

  20. 20.

    & Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

  21. 21.

    et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001).

  22. 22.

    et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).

  23. 23.

    et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

  24. 24.

    et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).

  25. 25.

    et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

  26. 26.

    et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

  27. 27.

    , & Optical frequency metrology. Nature 416, 233–237 (2002).

  28. 28.

    et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

  29. 29.

    & High harmonic imaging of few-cycle laser pulses. Phys. Rev. Lett. 91, 153901 (2003).

  30. 30.

    Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

  31. 31.

    , & in Super-intense Laser-atom Physics (eds Piraux, B., L'Huillier, A. & Rzazewski, K.) 507 (NATO ASI Series B, Plenum, 1993).

  32. 32.

    , , & Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

  33. 33.

    , , , & Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

  34. 34.

    et al. Atomic transient recorder. Nature 427, 817–821 (2004).

  35. 35.

    et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

  36. 36.

    , , , & Quantum theory of attosecond XUV pulse measurement by laser dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002).

  37. 37.

    & Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

  38. 38.

    , & Temporal characterization of attosecond XUV fields. J. Mod. Optics 52, 339–360 (2005).

  39. 39.

    , & Use of electron correlation to make attosecond measurements without attosecond pulses. Phys. Rev. Lett. 94, 213001 (2005).

  40. 40.

    , & Attosecond streaking measurements. J. Mod. Optics 52, 395–410 (2005).

  41. 41.

    , & Attosecond pulse trains using high–order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

  42. 42.

    et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

  43. 43.

    et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).

  44. 44.

    et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

  45. 45.

    et al. Attosecond electron wave packet dynamics in strong laser fields. Phys. Rev. Lett. 95, 013001 (2005).

  46. 46.

    et al. Attosecond electron wave packet interferometry. Nature Phys. 2, 323–326 (2006).

  47. 47.

    et al. Attosecond pulse trains generated using two color laser fields. Phys. Rev. Lett. 97, 013001 (2006).

  48. 48.

    , , , & Attosecond control of ionization by wave-packet interference. Phys. Rev. Lett. 99, 233001 (2007).

  49. 49.

    et al. Coherent electron scattering captured by an attosecond quantum stroboscope. Phys. Rev. Lett. 100, 073003 (2008).

  50. 50.

    et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

  51. 51.

    et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

  52. 52.

    et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

  53. 53.

    , & Mapping attosecond electron wave packet motion. Phys. Rev. Lett. 94, 083003 (2005).

  54. 54.

    , & Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470–474 (2005).

  55. 55.

    et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

  56. 56.

    Molecular imaging using recolliding electrons. J. Phys. B 40, R135–R173 (2007).

  57. 57.

    et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

  58. 58.

    , , , & Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

  59. 59.

    et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Phys. 7, 464–467 (2011).

  60. 60.

    et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

  61. 61.

    et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

  62. 62.

    et al. Laser tunnel ionization from multiple orbitals in HCl. Science 325, 1364–1367 (2009).

  63. 63.

    et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

  64. 64.

    et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

  65. 65.

    et al. The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science 335, 1336–1340 (2012).

  66. 66.

    et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

  67. 67.

    et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

  68. 68.

    et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

  69. 69.

    et al. Delay in photoemission. Science 328, 1658–1662 (2010).

  70. 70.

    et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

  71. 71.

    et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

  72. 72.

    et al. Attosecond electron spectroscopy using a novel interferometric pump-probe technique. Phys. Rev. Lett. 105, 053001 (2010).

  73. 73.

    et al. Molecular dissociative ionization and wave-packet dynamics studied using two-color XUV and IR pump-probe spectroscopy. Phys. Rev. Lett. 103, 123005 (2009).

  74. 74.

    et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

  75. 75.

    et al. Real-time observation of valence electron motion. Nature 466, 739–744 (2010).

  76. 76.

    et al. Synthesized light transients. Science 334, 195–200 (2011).

  77. 77.

    et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).

  78. 78.

    et al. Attosecond time-resolved photoemission from core and valence states of magnesium. Phys. Rev. Lett. 109, 087401 (2012).

  79. 79.

    & Attosecond photoelectron spectroscopy of metal surfaces. Phys. Rev. Lett. 102, 123601 (2009).

  80. 80.

    , , , & Electron guiding through insulating nanocapillaries. Phys. Rev. Lett. 102, 163201 (2009).

  81. 81.

    , , & Simulation of attosecond streaking of electrons emitted from a tungsten surface. Phys. Rev. A 79, 062901 (2009).

  82. 82.

    & One-electron model for the electronic response of metal surfaces to subfemtosecond photoexcitation. Phys. Rev. Lett. 102, 177401 (2009).

  83. 83.

    , , , & Dielectric screening and band-structure effects in low-energy photoemission. Phys. Rev. B 82, 125102 (2010).

  84. 84.

    Attosecond spectroscopy of solids: streaking phase shift due to lattice scattering. Phys. Rev. B 84, 195106 (2011).

  85. 85.

    & Streaking and Wigner time delays in photoemission from atoms and surfaces. Phys. Rev. A 84, 033401 (2011).

  86. 86.

    & Effect of wave-function localization on the time delay in photoemission from surfaces. Phys. Rev. A 84, 065403 (2011).

  87. 87.

    Behavior of non-metallic crystals in strong electric fields. Sov. Phys. JETP 33, 763–770 (1957).

  88. 88.

    & Absolute phase effect in ultrafast optical responses of metal nanostructures. Appl. Phys. A 89, 247–250 (2007).

  89. 89.

    , & Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

  90. 90.

    et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photon. 8, 37–42 (2014).

  91. 91.

    , , & Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

  92. 92.

    , , & Attosecond nanoplasmonic field microscope. Nature Photon. 1, 539–544 (2007).

  93. 93.

    Electric field controlled semiconductor device. US patent 3,102,230 (1963).

  94. 94.

    & Fundamentals of Modern VLSI Devices (Cambridge Univ. Press, 1998).

  95. 95.

    & Modern Microwave Transistors: Theory, Design and Performance (Wiley, 2003).

  96. 96.

    , & Nanometer CMOS (Pan Stanford, 2010).

  97. 97.

    et al. Submicron scaling of HBTs. IEEE T. Electron. Dev. 48, 2606–2624 (2001).

  98. 98.

    et al. InP hot electron transistors with a buried metal gate. Jpn. J. Appl. Phys. 1 42, 7221–7226 (2003).

  99. 99.

    AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid-State Electron. 48, 1981–1986 (2004).

  100. 100.

    , , & Analog performance of the nanoscale double-gate metal-oxide-semiconductor field-effect-transistor near the ultimate scaling limits. J. Appl. Phys. 96, 5271–5276 (2004).

  101. 101.

    et al. Imaging the coupling of terahertz radiation to a high electron mobility transistor in the near-field. J. Eur. Opt. Soc. Rapid Pub. 4, 09006 (2009).

  102. 102.

    et al. Plasma wave field effect transistor as a resonant detector for 1 terahertz imaging applications. Opt. Commun. 282, 3055–3058 (2009).

  103. 103.

    & 30-nm InAs PHEMTs with fT = 644 GHz and fmax = 681 GHz. IEEE Electron. Device Lett. 31, 806–808 (2010).

  104. 104.

    et al. A 320 Gb/s-throughput capable 2 × 2 silicon-plasmonic router architecture for optical interconnects. J. Lightwave Technol. 29, 3185–3195 (2011).

  105. 105.

    Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

  106. 106.

    & Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 76, 016402 (2013).

  107. 107.

    , , , & Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

  108. 108.

    et al. Observation of high-order harmonic generation in a bulk crystal. Nature Phys. 7, 138–141 (2011).

  109. 109.

    , , & Demonstration of attosecond ionization dynamics inside transparent solids. J. Phys. B 43, 131002 (2010).

  110. 110.

    et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

  111. 111.

    et al. Optical detection of attosecond ionization induced by a few-cycle laser field in a transparent dielectric material. Phys. Rev. Lett. 106, 147401 (2011).

  112. 112.

    & The transistor, a semi-conductor triode. Phys. Rev. 74, 230–231 (1948).

  113. 113.

    Elements of Solid State Theory (Cambridge Univ. Press, 1959).

  114. 114.

    et al. Addendum to “Optical-field-induced current in dielectrics.” Nature (in the press).

  115. 115.

    Field-induced optical nonlinearity due to virtual transitions in semiconductor quantum well structures. Phys. Rev. Lett. 59, 1014–1017 (1987).

  116. 116.

    , & Generation of ultrashort electrical pulses through screening by virtual populations in biased quantum wells. Phys. Rev. Lett. 59, 1018–1021 (1987).

  117. 117.

    , , & Virtual photoconductivity. Phys. Rev. Lett. 63, 976–979 (1989).

  118. 118.

    , & Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs. Phys. Rev. Lett. 67, 2709–2712 (1991).

  119. 119.

    et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

  120. 120.

    Optically induced currents in dielectrics as a nonlinear optical effect. Preprint at (2013).

  121. 121.

    et al. Petahertz optical oscilloscope. Nature Photon. 7, 958–962 (2013).

  122. 122.

    & Electrodynamics of Continuous Media: Volume 8 2nd edn (Pergamon, 1984).

  123. 123.

    et al. High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors in 2009 IEEE International Electron Devices Meeting (IEDM) 1–4 (2009).

  124. 124.

    & On-chip Communication Architectures: System on Chip Interconnect (Morgan Kaufmann, 2008).

  125. 125.

    & Attosecond science. Nature Phys. 3, 381–387 (2007).

  126. 126.

    & Intel's revolutionary 22 nm transistor technology (2011).

Download references

Acknowledgements

The authors thank V. Apalkov, N. Karpowicz and V. Yakovlev for valuable discussions. Financial support provided by the Munich Centre for Advanced Photonics is acknowledged. For M.I.S.'s work, the primary support was provided by grant No. DE-FG02-11ER46789 from the Materials Sciences and Engineering Division, Office of the Basic Energy Sciences, Office of Science, U.S. Department of Energy; additional support was provided by Grant No. DE-FG02-01ER15213 from the Chemical Sciences, Biosciences and Geosciences Division, Office of the Basic Energy Sciences, Office of Science, U.S. Department of Energy, and MURI Grant No. N00014-13-1-0649 from the U.S. Office of Naval Research.

Author information

Affiliations

  1. Fakultät für Physik, Ludwig-Maximilians-Universität, Am Coulombwall 1, D-85748 Garching, Germany

    • Ferenc Krausz
    •  & Mark I. Stockman
  2. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany

    • Ferenc Krausz
    •  & Mark I. Stockman
  3. Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA

    • Mark I. Stockman

Authors

  1. Search for Ferenc Krausz in:

  2. Search for Mark I. Stockman in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Ferenc Krausz or Mark I. Stockman.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2014.28

Further reading