Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Attosecond metrology: from electron capture to future signal processing

Abstract

The accurate measurement of time lies at the heart of experimental science, and is relevant to everyday life. Extending chronoscopy to ever shorter timescales has been the key to gaining real-time insights into microscopic phenomena, ranging from vital biological processes to the dynamics underlying high technologies. The generation of isolated attosecond pulses in 2001 allowed the fastest of all motions outside the nucleus — electron dynamics in atomic systems — to be captured. Attosecond metrology has provided access to several hitherto immeasurably fast electron phenomena in atoms, molecules and solids. The fundamental importance of electron processes for the physical and life sciences, technology and medicine has rendered the young field of attosecond science one of the most dynamically expanding research fields of the new millennium. Here, we review the basic concepts underlying attosecond measurement and control techniques. Among their many potential applications, we focus on the exploration of the fundamental speed limit of electronic signal processing. This endeavour relies on ultimate-speed electron metrology, as provided by attosecond technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of ultrafast science and digital electronics.
Figure 2: Prediction of attosecond XUV pulses.
Figure 3: Concept of light-field-driven attosecond streaking.
Figure 4: Tools of attosecond metrology and spectroscopy.
Figure 5: Electron micrographs of Intel processor chip and MOSFETs in it.
Figure 6: Attosecond time-resolved, strong-field-induced effects in SiO2.
Figure 7: Adiabatic energy spectra of valence and conduction bands for silica in strong fields.

Similar content being viewed by others

References

  1. Krehl, P. & Engemann, S. August Toepler — the first who visualized shock waves. Shock Waves 5, 1–18 (1995).

    ADS  MATH  Google Scholar 

  2. Abraham, H. & Lemoine, T. Disparition instantanée du phénomène de Kerr. Compt. Rend. (Paris) 129, 206–208 (1899).

    Google Scholar 

  3. Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    ADS  Google Scholar 

  4. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    ADS  Google Scholar 

  5. Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    ADS  Google Scholar 

  6. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    ADS  Google Scholar 

  7. Boyd, R. W. Nonlinear optics 2nd edn (Academic, 2003).

    Google Scholar 

  8. Diels, J.-C. & Rudolph, W. Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale 2nd edn (Academic, 2006).

    Google Scholar 

  9. Fork, R. L., Brito Cruz, C. H., Becker, P. C. & Shank, C. V. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987).

    ADS  Google Scholar 

  10. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    ADS  Google Scholar 

  11. Szipöcs, R., Ferencz, K., Spielmann, C. & Krausz, F. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201–203 (1994).

    ADS  Google Scholar 

  12. Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    Google Scholar 

  13. Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979).

    ADS  Google Scholar 

  14. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    ADS  Google Scholar 

  15. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Google Scholar 

  16. Macklin, J. J., Kmetec, J. D. & Gordon, C. L. III. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993).

    ADS  Google Scholar 

  17. L'Huillier, A. & Balcou, P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993).

    ADS  Google Scholar 

  18. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  Google Scholar 

  19. Agostini, P. & DiMauro, L. F. The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813–855 (2004).

    ADS  Google Scholar 

  20. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Google Scholar 

  21. Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001).

    ADS  Google Scholar 

  22. Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).

    ADS  Google Scholar 

  23. Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    ADS  Google Scholar 

  24. Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).

    ADS  Google Scholar 

  25. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    ADS  Google Scholar 

  26. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    ADS  Google Scholar 

  27. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Google Scholar 

  28. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    ADS  Google Scholar 

  29. Yakovlev, V. S. & Scrinzi, A. High harmonic imaging of few-cycle laser pulses. Phys. Rev. Lett. 91, 153901 (2003).

    ADS  Google Scholar 

  30. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Google Scholar 

  31. Kulander, K. C., Schafe, K. J. & Krause, J. L. in Super-intense Laser-atom Physics (eds Piraux, B., L'Huillier, A. & Rzazewski, K.) 507 (NATO ASI Series B, Plenum, 1993).

    Google Scholar 

  32. Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    ADS  Google Scholar 

  33. Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Google Scholar 

  34. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    ADS  Google Scholar 

  35. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    ADS  Google Scholar 

  36. Kitzler, M., Milosevic, N., Scrinzi, A., Krausz, F. & Brabec, T. Quantum theory of attosecond XUV pulse measurement by laser dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002).

    ADS  Google Scholar 

  37. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    ADS  Google Scholar 

  38. Quéré, F., Mairesse, Y. & Itatani, J. Temporal characterization of attosecond XUV fields. J. Mod. Optics 52, 339–360 (2005).

    ADS  Google Scholar 

  39. Smirnova, O., Yakovlev, V. S. & Ivanov, M. Use of electron correlation to make attosecond measurements without attosecond pulses. Phys. Rev. Lett. 94, 213001 (2005).

    ADS  Google Scholar 

  40. Yakovlev, V. S., Bammer, F. & Scrinzi, A. Attosecond streaking measurements. J. Mod. Optics 52, 395–410 (2005).

    ADS  MATH  Google Scholar 

  41. Antoine, P., L'Huillier, A. & Lewenstein, M. Attosecond pulse trains using high–order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    ADS  Google Scholar 

  42. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Google Scholar 

  43. López-Martens, R. et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).

    ADS  Google Scholar 

  44. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

    ADS  Google Scholar 

  45. Johnsson, P. et al. Attosecond electron wave packet dynamics in strong laser fields. Phys. Rev. Lett. 95, 013001 (2005).

    ADS  Google Scholar 

  46. Remetter, T. et al. Attosecond electron wave packet interferometry. Nature Phys. 2, 323–326 (2006).

    ADS  Google Scholar 

  47. Mauritsson, J. et al. Attosecond pulse trains generated using two color laser fields. Phys. Rev. Lett. 97, 013001 (2006).

    ADS  Google Scholar 

  48. Johnsson, P., Mauritsson, J., Remetter, T., L'Huillier, A. & Schafer, K. J. Attosecond control of ionization by wave-packet interference. Phys. Rev. Lett. 99, 233001 (2007).

    ADS  Google Scholar 

  49. Mauritsson, J. et al. Coherent electron scattering captured by an attosecond quantum stroboscope. Phys. Rev. Lett. 100, 073003 (2008).

    ADS  Google Scholar 

  50. Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    ADS  Google Scholar 

  51. Niikura, H. et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

    ADS  Google Scholar 

  52. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    ADS  Google Scholar 

  53. Niikura, H., Villeneuve, D. M. & Corkum, P. B. Mapping attosecond electron wave packet motion. Phys. Rev. Lett. 94, 083003 (2005).

    ADS  Google Scholar 

  54. Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470–474 (2005).

    ADS  Google Scholar 

  55. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    ADS  Google Scholar 

  56. Manfred, L. Molecular imaging using recolliding electrons. J. Phys. B 40, R135–R173 (2007).

    Google Scholar 

  57. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  Google Scholar 

  58. Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

    ADS  Google Scholar 

  59. Shiner, A. D. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Phys. 7, 464–467 (2011).

    ADS  Google Scholar 

  60. Wörner, H. J. et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

    ADS  Google Scholar 

  61. Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

    ADS  Google Scholar 

  62. Akagi, H. et al. Laser tunnel ionization from multiple orbitals in HCl. Science 325, 1364–1367 (2009).

    ADS  Google Scholar 

  63. Blaga, C. I. et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

    ADS  Google Scholar 

  64. Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

    ADS  Google Scholar 

  65. Boguslavskiy, A. E. et al. The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science 335, 1336–1340 (2012).

    ADS  Google Scholar 

  66. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    ADS  Google Scholar 

  67. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    ADS  Google Scholar 

  68. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Google Scholar 

  69. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Google Scholar 

  70. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    ADS  Google Scholar 

  71. Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    ADS  Google Scholar 

  72. Mauritsson, J. et al. Attosecond electron spectroscopy using a novel interferometric pump-probe technique. Phys. Rev. Lett. 105, 053001 (2010).

    ADS  Google Scholar 

  73. Kelkensberg, F. et al. Molecular dissociative ionization and wave-packet dynamics studied using two-color XUV and IR pump-probe spectroscopy. Phys. Rev. Lett. 103, 123005 (2009).

    ADS  Google Scholar 

  74. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Google Scholar 

  75. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–744 (2010).

    ADS  Google Scholar 

  76. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    ADS  Google Scholar 

  77. Föhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).

    ADS  Google Scholar 

  78. Neppl, S. et al. Attosecond time-resolved photoemission from core and valence states of magnesium. Phys. Rev. Lett. 109, 087401 (2012).

    ADS  Google Scholar 

  79. Zhang, C.-H. & Thumm, U. Attosecond photoelectron spectroscopy of metal surfaces. Phys. Rev. Lett. 102, 123601 (2009).

    ADS  Google Scholar 

  80. Schiessl, K., Tökési, K., Solleder, B., Lemell, C. & Burgdörfer, J. Electron guiding through insulating nanocapillaries. Phys. Rev. Lett. 102, 163201 (2009).

    ADS  Google Scholar 

  81. Lemell, C., Solleder, B., Tökési, K. & Burgdörfer, J. Simulation of attosecond streaking of electrons emitted from a tungsten surface. Phys. Rev. A 79, 062901 (2009).

    ADS  Google Scholar 

  82. Kazansky, A. K. & Echenique, P. M. One-electron model for the electronic response of metal surfaces to subfemtosecond photoexcitation. Phys. Rev. Lett. 102, 177401 (2009).

    ADS  Google Scholar 

  83. Krasovskii, E. E., Silkin, V. M., Nazarov, V. U., Echenique, P. M. & Chulkov, E. V. Dielectric screening and band-structure effects in low-energy photoemission. Phys. Rev. B 82, 125102 (2010).

    ADS  Google Scholar 

  84. Krasovskii, E. E. Attosecond spectroscopy of solids: streaking phase shift due to lattice scattering. Phys. Rev. B 84, 195106 (2011).

    ADS  Google Scholar 

  85. Zhang, C.-H. & Thumm, U. Streaking and Wigner time delays in photoemission from atoms and surfaces. Phys. Rev. A 84, 033401 (2011).

    ADS  Google Scholar 

  86. Zhang, C.-H. & Thumm, U. Effect of wave-function localization on the time delay in photoemission from surfaces. Phys. Rev. A 84, 065403 (2011).

    ADS  Google Scholar 

  87. Keldysh, L. V. Behavior of non-metallic crystals in strong electric fields. Sov. Phys. JETP 33, 763–770 (1957).

    MATH  Google Scholar 

  88. Stockman, M. I. & Hewageegana, P. Absolute phase effect in ultrafast optical responses of metal nanostructures. Appl. Phys. A 89, 247–250 (2007).

    ADS  Google Scholar 

  89. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Google Scholar 

  90. Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photon. 8, 37–42 (2014).

    ADS  Google Scholar 

  91. Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    ADS  Google Scholar 

  92. Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic field microscope. Nature Photon. 1, 539–544 (2007).

    ADS  Google Scholar 

  93. Kahng, D. Electric field controlled semiconductor device. US patent 3,102,230 (1963).

  94. Taur, Y. & Ning, T. H. Fundamentals of Modern VLSI Devices (Cambridge Univ. Press, 1998).

    Google Scholar 

  95. Liou, J. J. & Schwierz, F. Modern Microwave Transistors: Theory, Design and Performance (Wiley, 2003).

    Google Scholar 

  96. Schwierz, F., Wong, H. & Liou, J. J. Nanometer CMOS (Pan Stanford, 2010).

    Google Scholar 

  97. Rodwell, M. J. W. et al. Submicron scaling of HBTs. IEEE T. Electron. Dev. 48, 2606–2624 (2001).

    ADS  Google Scholar 

  98. Miyamoto, Y. et al. InP hot electron transistors with a buried metal gate. Jpn. J. Appl. Phys. 1 42, 7221–7226 (2003).

    Google Scholar 

  99. Burke, P. J. AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid-State Electron. 48, 1981–1986 (2004).

    ADS  Google Scholar 

  100. Jimenez, D., Iniguez, B., Sune, J. & Saenz, J. J. Analog performance of the nanoscale double-gate metal-oxide-semiconductor field-effect-transistor near the ultimate scaling limits. J. Appl. Phys. 96, 5271–5276 (2004).

    ADS  Google Scholar 

  101. Ortolani, M. et al. Imaging the coupling of terahertz radiation to a high electron mobility transistor in the near-field. J. Eur. Opt. Soc. Rapid Pub. 4, 09006 (2009).

    Google Scholar 

  102. El Fatimy, A. et al. Plasma wave field effect transistor as a resonant detector for 1 terahertz imaging applications. Opt. Commun. 282, 3055–3058 (2009).

    ADS  Google Scholar 

  103. Kim, D. H. & del Alamo, J. A. 30-nm InAs PHEMTs with f T = 644 GHz and fmax = 681 GHz. IEEE Electron. Device Lett. 31, 806–808 (2010).

    ADS  Google Scholar 

  104. Papaioannou, S. et al. A 320 Gb/s-throughput capable 2 × 2 silicon-plasmonic router architecture for optical interconnects. J. Lightwave Technol. 29, 3185–3195 (2011).

    ADS  Google Scholar 

  105. Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

    ADS  Google Scholar 

  106. Han, Z. & Bozhevolnyi, S. I. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 76, 016402 (2013).

    ADS  Google Scholar 

  107. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    ADS  Google Scholar 

  108. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nature Phys. 7, 138–141 (2011).

    ADS  Google Scholar 

  109. Gertsvolf, M., Spanner, M., Rayner, D. M. & Corkum, P. B. Demonstration of attosecond ionization dynamics inside transparent solids. J. Phys. B 43, 131002 (2010).

    ADS  Google Scholar 

  110. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    ADS  Google Scholar 

  111. Mitrofanov, A. V. et al. Optical detection of attosecond ionization induced by a few-cycle laser field in a transparent dielectric material. Phys. Rev. Lett. 106, 147401 (2011).

    ADS  Google Scholar 

  112. Bardeen, J. & Brattain, W. H. The transistor, a semi-conductor triode. Phys. Rev. 74, 230–231 (1948).

    ADS  Google Scholar 

  113. Wannier, G. H. Elements of Solid State Theory (Cambridge Univ. Press, 1959).

    MATH  Google Scholar 

  114. Schiffrin, A. et al. Addendum to “Optical-field-induced current in dielectrics.” Nature http://dx.doi.org/10.1038/nature13077 (in the press).

  115. Yamanishi, M. Field-induced optical nonlinearity due to virtual transitions in semiconductor quantum well structures. Phys. Rev. Lett. 59, 1014–1017 (1987).

    ADS  Google Scholar 

  116. Chemla, D. S., Miller, D. A. B. & Schmitt-Rink, S. Generation of ultrashort electrical pulses through screening by virtual populations in biased quantum wells. Phys. Rev. Lett. 59, 1018–1021 (1987).

    ADS  Google Scholar 

  117. Yablonovitch, E., Heritage, J. P., Aspnes, D. E. & Yafet, Y. Virtual photoconductivity. Phys. Rev. Lett. 63, 976–979 (1989).

    ADS  Google Scholar 

  118. Hu, B. B., Zhang, X.-C. & Auston, D. H. Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs. Phys. Rev. Lett. 67, 2709–2712 (1991).

    ADS  Google Scholar 

  119. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    ADS  Google Scholar 

  120. Khurgin, J. Optically induced currents in dielectrics as a nonlinear optical effect. Preprint at http://arXiv.org/abs/1303.3994 (2013).

  121. Kim, K. T. et al. Petahertz optical oscilloscope. Nature Photon. 7, 958–962 (2013).

    ADS  Google Scholar 

  122. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media: Volume 8 2nd edn (Pergamon, 1984).

    Google Scholar 

  123. Packan, P. et al. High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors in 2009 IEEE International Electron Devices Meeting (IEDM) 1–4 (2009).

  124. Pasricha, S. & Dutt, N. On-chip Communication Architectures: System on Chip Interconnect (Morgan Kaufmann, 2008).

    Google Scholar 

  125. Corkum, P. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    ADS  Google Scholar 

  126. Bohr, M. & Mistry, K. Intel's revolutionary 22 nm transistor technology http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Details_Presentation.pdf (2011).

    Google Scholar 

Download references

Acknowledgements

The authors thank V. Apalkov, N. Karpowicz and V. Yakovlev for valuable discussions. Financial support provided by the Munich Centre for Advanced Photonics is acknowledged. For M.I.S.'s work, the primary support was provided by grant No. DE-FG02-11ER46789 from the Materials Sciences and Engineering Division, Office of the Basic Energy Sciences, Office of Science, U.S. Department of Energy; additional support was provided by Grant No. DE-FG02-01ER15213 from the Chemical Sciences, Biosciences and Geosciences Division, Office of the Basic Energy Sciences, Office of Science, U.S. Department of Energy, and MURI Grant No. N00014-13-1-0649 from the U.S. Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ferenc Krausz or Mark I. Stockman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krausz, F., Stockman, M. Attosecond metrology: from electron capture to future signal processing. Nature Photon 8, 205–213 (2014). https://doi.org/10.1038/nphoton.2014.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing