Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Einstein–Bohr recoiling double-slit gedanken experiment performed at the molecular level

Abstract

Double-slit experiments illustrate the quintessential proof for wave–particle complementarity. If information is missing about which slit the particle has traversed, the particle, behaving as a wave, passes simultaneously through both slits. This wave-like behaviour and corresponding interference is absent if ‘which-slit’ information exists. The essence of Einstein–Bohr's debate about wave–particle duality was whether the momentum transfer between a particle and a recoiling slit could mark the path, thus destroying the interference. To measure the recoil of a slit, the slits should move independently. We showcase a materialization of this recoiling double-slit gedanken experiment by resonant X-ray photoemission from molecular oxygen for geometries near equilibrium (coupled slits) and in a dissociative state far away from equilibrium (decoupled slits). Interference is observed in the former case, while the electron momentum transfer quenches the interference in the latter case owing to Doppler labelling of the counter-propagating atomic slits, in full agreement with Bohr's complementarity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the Einstein–Bohr recoiling double-slit experiment.
Figure 2: Electron energy/ion energy and ion energy/angle correlation maps for the dissociative σ* and bound Rydberg core-excited states.
Figure 3: Physical picture of the momentum exchange mechanism near the equilibrium geometry and in the dissociative region.
Figure 4: Correlation maps between the Auger electron kinetic energy and cosθ and their one-dimensional representation.

Similar content being viewed by others

References

  1. Bohr, N. in Quantum Theory and Measurement (eds Wheeler, J. A. & Zurek, W. H.) 9–49 (Princeton Univ. Press, 1983).

    Google Scholar 

  2. Wootters, W. K. & Zurek, W. H. Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr's principle. Phys. Rev. D 19, 473–484 (1979).

    Article  ADS  Google Scholar 

  3. Bertet, P. et al. A complementarity experiment with an interferometer at the quantum-classical boundary. Nature 411, 166–170 (2001).

    Article  ADS  Google Scholar 

  4. Chapman, M. S. et al. Photon scattering from atoms in an atom interferometer: coherence lost and regained. Phys. Rev. Lett. 75, 3783–3787 (1995).

    Article  ADS  Google Scholar 

  5. Tomkovič, J. et al. Single spontaneous photon as a coherent beamsplitter for an atomic matter-wave. Nature Phys. 7, 379–382 (2011).

    Article  ADS  Google Scholar 

  6. Arndt, M. Quantum optics: coherence from spontaneity. Nature Phys. 7, 375–376 (2011).

    Article  ADS  Google Scholar 

  7. Akoury, D. et al. The simplest double slit: interference and entanglement in double photoionization of H2 . Science 318, 949–952 (2007).

    Article  ADS  Google Scholar 

  8. Cherepkov, N. A. et al. Auger decay of 1 σ g and 1 σ u hole states of the N2 molecule. II. Young-type interference of Auger electrons and its dependence on internuclear distance. Phys. Rev. A 82, 023420 (2010).

    Article  ADS  Google Scholar 

  9. Martín, F. et al. Single photon-induced symmetry breaking of H2 dissociation. Science 315, 629–633 (2007).

    Article  ADS  Google Scholar 

  10. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–767 (2010).

    Article  ADS  Google Scholar 

  11. Gel'mukhanov, F. & Ågren, H. Resonant inelastic X-ray scattering with symmetry-selective excitation. Phys. Rev. A 49, 4378–4389 (1994).

    Article  ADS  Google Scholar 

  12. Schöffler, M. S. et al. Ultrafast probing of core hole localization in N2 . Science 320, 920–923 (2008).

    Article  ADS  Google Scholar 

  13. Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).

    Article  ADS  Google Scholar 

  14. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463–1545 (2003).

    Article  ADS  Google Scholar 

  15. Miron, C. & Morin, P. High-resolution inner-shell coincidence spectroscopy. Nucl. Instrum. Methods A 601, 66–77 (2009).

    Article  ADS  Google Scholar 

  16. Yagishita, A., Shigemasa, E. & Kosugi, N. Observation of Rydberg-valence mixing in high-resolution symmetry-resolved oxygen K-edge spectra of O2 . Phys. Rev. Lett. 72, 3961–3964 (1994).

    Article  ADS  Google Scholar 

  17. Tanaka, T. et al. Symmetry-resolved X-ray absorption fine structure and resonant Auger-spectator–electron decay study of O 1s→Rydberg resonances in O2 . Phys. Rev. A 78, 022516 (2008).

    Article  ADS  Google Scholar 

  18. Gel'mukhanov F. & Ågren, H. Resonant X-ray Raman scattering. Phys. Rep. 312, 87–332 (1999).

    Article  ADS  Google Scholar 

  19. Sorensen, S. L. et al. High-resolution excitation-energy-dependent study of the Auger decay of the O 1S−1π g core-excited state in oxygen. Phys. Rev. A 64, 012719 (2001).

    Article  ADS  Google Scholar 

  20. Kimberg, V. et al. Single-molecule X-ray interferometry: controlling coupled electron-nuclear quantum dynamics and imaging molecular potentials by ultrahigh-resolution resonant photoemission and ab initio calculations. Phys. Rev. X 3, 011017 (2013).

    Google Scholar 

  21. Miron, C. et al. Imaging molecular potentials using ultrahigh resolution resonant photoemission. Nature Phys. 8, 135–138 (2012).

    Article  ADS  Google Scholar 

  22. Gel'mukhanov, F & Ågren, H. X-ray resonant scattering involving dissociative states. Phys. Rev. A 54, 379–393 (1996).

    Article  ADS  Google Scholar 

  23. Björneholm, O. et al. Doppler splitting of in-flight Auger decay of dissociating oxygen molecules: the localization of delocalized core holes. Phys. Rev. Lett. 84, 2826–2829 (2000).

    Article  ADS  Google Scholar 

  24. Baev, A. et al. Doppler interference in dissociative resonant photoemission. Phys. Rev. A 66, 022509 (2002).

    Article  ADS  Google Scholar 

  25. Lindblad, A. et al. Vibrational scattering anisotropy in O2—dynamics beyond the Born–Oppenheimer approximation. New J. Phys. 14, 113018 (2012).

    Article  ADS  Google Scholar 

  26. Morin, P. & Miron, C. Ultrafast dissociation: an unexpected tool for probing molecular dynamics. J. Electron Spectrosc. Relat. Phenom. 185, 259–266 (2012).

    Article  Google Scholar 

  27. Morin, P. & Nenner, I. Atomic autoionization following very fast dissociation of core-excited HBr. Phys. Rev. Lett. 56, 1913–1916 (1986).

    Article  ADS  Google Scholar 

  28. Gel'mukhanov, F., Ågren, H. & Sałek, P. Doppler effects in resonant X-ray Raman scattering. Phys. Rev. A 57, 2511–2526 (1998).

    Article  ADS  Google Scholar 

  29. Thomas, I. L. Angular dependence of the vibrational and rotational excitations seen in photoelectron spectroscopy. Phys. Rev. A 4, 457–459 (1971).

    Article  ADS  Google Scholar 

  30. Cohen, H. D. & Fano, U. Interference in the photo-ionization of molecules. Phys. Rev. 150, 30–33 (1966).

    Article  ADS  Google Scholar 

  31. Liu, X.-J. et al. Young's double-slit experiment using core-level photoemission from N2: revisiting Cohen–Fano's two-centre interference phenomenon. J. Phys. B 39, 4801–4817 (2006).

    Article  ADS  Google Scholar 

  32. Zimmermann, B. et al. Localization and loss of coherence in molecular double-slit experiments. Nature Phys. 4, 649–655 (2008).

    Article  ADS  Google Scholar 

  33. Kushawaha, R. K. et al. From double-slit interference to structural information in simple hydrocarbons. Proc. Natl Acad. Sci. USA 110, 15201–15206 (2013).

    Article  ADS  Google Scholar 

  34. Wiseman, H. M. et al. Nonlocal momentum transfer in welcher Weg measurements. Phys. Rev. A 56, 55–75 (1997).

    Article  ADS  Google Scholar 

  35. Dürr, S., Nonn, T. & Rempe, G. Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature 395, 33–37 (1998).

    Article  ADS  Google Scholar 

  36. Aharonov, Y. & Bohm, D. Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  37. Schmidt, L. Ph. H. et al. Momentum transfer to a free floating double slit: realization of a thought experiment from the Einstein–Bohr debates. Phys. Rev. Lett. 111, 103201 (2013).

    Article  ADS  Google Scholar 

  38. Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nature Phys. 6, 139–142 (2010).

    Article  ADS  Google Scholar 

  39. Travnikova, O. et al. On routes to ultrafast dissociation of polyatomic molecules. J. Phys. Chem. Lett. 4, 2361–2366 (2013).

    Article  Google Scholar 

  40. Miron, C., Simon, M., Leclercq, N. & Morin, P. A new high luminosity double toroidal electron spectrometer. Rev. Sci. Instrum. 68, 3728–3737 (1997).

    Article  ADS  Google Scholar 

  41. Le Guen, K. et al. Development of a four-element conical electron lens dedicated to high resolution Auger electron–ion(s) coincidence experiments. Rev. Sci. Instrum. 73, 3885–3894 (2002).

    Article  ADS  Google Scholar 

  42. Liu, X.-J., Nicolas, C. & Miron, C. Design of a lens table for a double toroidal electron spectrometer. Rev. Sci. Instrum. 84, 033105 (2013).

    Article  ADS  Google Scholar 

  43. Teo, B.-K. & Lee, P. A. Ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. J. Am. Chem. Soc. 101, 2815–2832 (1979).

    Article  Google Scholar 

  44. Guimarães, F. F. et al. Enhancement of the recoil effect in X-ray photoelectron spectra of molecules driven by a strong IR field. Phys. Rev. A 72, 023414 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Experiments were performed at the PLEIADES beamline at SOLEIL synchrotron, France (proposal no. 99110013). The authors thank N. Kosugi for sharing knowledge of the oxygen molecule, D. Serban and P. Morin for stimulating discussions about the physical interpretation, E. Robert for technical assistance and the SOLEIL staff for the smooth running of the facility. This work is supported by a public grant from the ‘Laboratoire d'Excellence Physics Atoms Light Matter’ (LabEx PALM) overseen by the French National Research Agency (ANR) as part of the ‘Investissements d'Avenir’ programme (reference no. ANR-10-LABX-0039). The research leading to these results has also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 252781 and the European Cooperation in Science and Technology (COST) action CM1204–XUV/X-ray light and fast ions for ultrafast chemistry (XLIC), from Triangle de la Physique under contract no. 2007-010T, from the Japan Society for the Promotion of Science (JSPS) and from the Swedish Research Council (VR) under grants nos 621-2012-3675 (F.G.) and 621-2012-3347 (H.Å.).

Author information

Authors and Affiliations

Authors

Contributions

C.M. suggested and designed the experiment. X.L. upgraded the experimental set-up and carried out the data analysis. X.L., M.P., C.N. and O.T. participated in data acquisition. F.G. and C.M. proposed the data interpretation. H.Å. contributed to the data interpretation. F.G. designed the theory. Q.M. performed the theoretical simulations. F.G., H.Å. and C.M. wrote the paper. X.L., Q.M. and C.N. participated in the production of figures. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Catalin Miron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XJ., Miao, Q., Gel'mukhanov, F. et al. Einstein–Bohr recoiling double-slit gedanken experiment performed at the molecular level. Nature Photon 9, 120–125 (2015). https://doi.org/10.1038/nphoton.2014.289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing