Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution


Colloidal quantum dots, viruses, DNA and all other nanoparticles have acoustic vibrations that can act as ‘fingerprints’ to identify their shape, size and mechanical properties, yet high-resolution Raman spectroscopy in this low-energy range has been lacking. Here, we demonstrate extraordinary acoustic Raman (EAR) spectroscopy to measure the Raman-active vibrations of single isolated nanoparticles in the 0.1–10 cm−1 range with 0.05 cm−1 resolution, to resolve peak splitting from material anisotropy and to probe the low-frequency modes of biomolecules. EAR employs a nanoaperture laser tweezer that can select particles of interest and manipulate them once identified. We therefore believe that this nanotechnology will enable expanded capabilities for the study of nanoparticles in the materials and life sciences.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Working principle of the DNH–EAR experiment.
Figure 2: Experimental set-up.
Figure 3: Raman spectrum of a 20 nm polystyrene nanosphere and experimentally confirmed resonant peaks.
Figure 4: Short-range Raman spectrum of a 20.5 nm titania nanosphere.
Figure 5: Raman spectra of two globular proteins.


  1. 1

    Van Thourhout, D. & Roels, J. Optomechanical device actuation through the optical gradient force. Nature Photon. 4, 211–217 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Yadav, H. K. et al. Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles. Phys. Rev. Lett. 97, 085502 (2006).

    ADS  Article  Google Scholar 

  3. 3

    Fujii, M., Hayashi, S. & Yamamoto, K. Raman scattering from quantum dots of Ge embedded in SiO2 thin films. Appl. Phys. Lett. 57, 2692–2694 (1990).

    ADS  Article  Google Scholar 

  4. 4

    Thomas, G. J. & Murphy, P. Structure of coat proteins in Pf1 and fd virions by laser Raman spectroscopy. Science 188, 1205–1207 (1975).

    ADS  Article  Google Scholar 

  5. 5

    Urabe, H. & Tominaga, Y. Low frequency Raman spectra of DNA. J. Phys. Soc. Jpn 50, 3543–3544 (1981).

    ADS  Article  Google Scholar 

  6. 6

    Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998).

    Article  Google Scholar 

  7. 7

    Nicolaï, A., Delarue, P. & Senet, P. in Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes Vol. 1 (ed. Liwo, A.) Ch. 15, 483–524 (Springer Series in Bio-Neuroinformatics, Springer, 2014).

    Book  Google Scholar 

  8. 8

    Saviot, L., Champagnon, B., Duval, E. & Ekimov, A. I. Size-selective resonant Raman scattering in CdS doped glasses. Phys. Rev. B 57, 341–346 (1998).

    ADS  Article  Google Scholar 

  9. 9

    Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  10. 10

    Zhong, Q. & Fourkas, J. Optical Kerr effect spectroscopy of simple liquids. J. Phys. Chem. B 49, 15529–15539 (2008).

    Article  Google Scholar 

  11. 11

    Hartland, G. V. Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 57, 403–430 (2006).

    ADS  Article  Google Scholar 

  12. 12

    Pelton, M. et al. Damping of acoustic vibrations in gold nanoparticles. Nature Nanotech. 4, 492–495 (2009).

    ADS  Article  Google Scholar 

  13. 13

    Van Dijk, M. A., Lippitz, M. & Orrit, M. Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry. Phys. Rev. Lett. 95, 267406 (2005).

    ADS  Article  Google Scholar 

  14. 14

    Yu, K., Zijlstra, P., Sader, J. E., Xu, Q. H. & Orrit, M. Damping of acoustic vibrations of immobilized single gold nanorods in different environments. Nano Lett. 13, 2710–2716 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Turton, D. et al. Terahertz underdamped vibrational motion governs protein–ligand binding in solution. Nature Commun. 5, 3999 (2014).

    ADS  Article  Google Scholar 

  16. 16

    Fujisaki, H. & Straub, J. E. Vibrational energy relaxation in proteins. Proc. Natl Acad. Sci. USA 102, 6726–6731 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Kotnala, A. & Gordon, R. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. Nano Lett. 14, 853–856 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    ADS  Article  Google Scholar 

  19. 19

    Pang, Y. & Gordon, R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett. 11, 3763–3767 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Al Balushi, A. A., Zehtabi-Oskuie, A. & Gordon, R. Observing single protein binding by optical transmission through a double nanohole aperture in a metal film. Biomed. Opt. Express 4, 1504–1511 (2013).

    Article  Google Scholar 

  21. 21

    Kotnala, A., DePaoli, D. & Gordon, R. Sensing nanoparticles using a double nanohole optical trap. Lab on a Chip 13, 4142–4146 (2013).

    Article  Google Scholar 

  22. 22

    Pang, Y. & Gordon, R. Optical trapping of a single protein. Nano Lett. 12, 402–406 (2011).

    ADS  Article  Google Scholar 

  23. 23

    Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys. 5, 915–919 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Melentiev, P., Afanasiev, A., Kuzin, A., Baturin, A. & Balykin, V. Giant optical nonlinearity of a single plasmonic nanostructure. Opt. Express 21, 13896–13905 (2013).

    ADS  Article  Google Scholar 

  25. 25

    Ovsyuk, N. N. & Novikov, V. N. Influence of a glass matrix on acoustic phonons confined in microcrystals. Phys. Rev. B 53, 3113–3118 (1996).

    ADS  Article  Google Scholar 

  26. 26

    Ivanda, M. et al. Raman scattering of acoustical modes of silicon nanoparticles embedded in silica matrix. J. Raman Spectrosc. 37, 161–165 (2006).

    ADS  Article  Google Scholar 

  27. 27

    Pighini, C., Aymes, D., Millot, N. & Saviot, L. Low-frequency Raman characterization of size-controlled anatase TiO2 nanopowders prepared by continuous hydrothermal syntheses. J. Nanopart. Res. 9, 309–315 (2007).

    ADS  Article  Google Scholar 

  28. 28

    Still, T., Mattarelli, M., Kiefer, D., Fytas, G. & Montagna, M. Eigenvibrations of submicrometer colloidal spheres. J. Phys. Chem. Lett. 1, 2440–2444 (2010).

    Article  Google Scholar 

  29. 29

    Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media 55–58 (Pergamon Press, 1960).

    Google Scholar 

  30. 30

    Murray, D. B. & Saviot, L. Damping by bulk and shear viscosity for confined acoustic phonons of a spherical virus in water. J. Phys. Conf. Ser. 92, 71–78 (2007).

    Article  Google Scholar 

  31. 31

    Ding, Y. & Xiao, B. Anisotropic elasticity, sound velocity and thermal conductivity of TiO2 polymorphs from first principles calculations. Comput. Mater. Sci. 82, 202–218 (2014).

    Article  Google Scholar 

  32. 32

    Wang, C. H. & McHale, J. Vibrational resonance coupling and the noncoincidence effect of the isotropic and anisotropic Raman spectral components in orientationally anisometric molecular liquids. J. Chem. Phys. 72, 4039–4044 (1980).

    ADS  Article  Google Scholar 

  33. 33

    Berthelot, J. et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotech. 9, 295–299 (2014).

    ADS  Article  Google Scholar 

  34. 34

    Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    ADS  Article  Google Scholar 

  35. 35

    Pang, Y., Song, H., Kim, J. H., Hou, X. & Cheng, W. Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution. Nature Nanotech. 9, 624–630 (2014).

    ADS  Article  Google Scholar 

  36. 36

    Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    ADS  Article  Google Scholar 

Download references


The authors acknowledge financial support from the Natural Sciences and Engineering Research Council Discovery Grant programme and the National Science Foundation postdoctoral fellowship programme.

Author information




S.W. performed the experiment, fabrication, sample preparation, data processing and interpretation, and assisted with manuscript preparation. R.M.G. assisted in the experiments and performed the simulations. R.G. conceived the experimental approach, supervised the experiments and assisted in manuscript preparation.

Corresponding author

Correspondence to Reuven Gordon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1081 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wheaton, S., Gelfand, R. & Gordon, R. Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nature Photon 9, 68–72 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing