Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photon number resolution enables quantum receiver for realistic coherent optical communications


Quantum-enhanced measurements can provide information about the properties of a physical system with sensitivities beyond what is fundamentally possible with conventional technologies. However, this advantage can be achieved only if quantum measurement technologies are robust against losses and real-world imperfections, and can operate in regimes compatible with existing systems. Here, we demonstrate a quantum receiver for coherent communication, the performance of which not only surpasses the standard quantum limit, but does so for input powers extending to high mean photon numbers. This receiver uses adaptive measurements and photon number resolution to achieve high sensitivity and robustness against imperfections, and ultimately shows the greatest advantage over the standard quantum limit ever achieved by any quantum receiver at power levels compatible with state-of-the-art optical communication systems. Our demonstration shows that quantum measurements can provide real and practical advantages over conventional technologies for optical communications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Robust receiver with photon number resolution.
Figure 2: Experimental implementation of a receiver.
Figure 3: Experimental results.
Figure 4: Minimum codeword length nmin.


  1. 1

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  Article  Google Scholar 

  2. 2

    Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).

    ADS  Article  Google Scholar 

  3. 3

    Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2013).

    ADS  Article  Google Scholar 

  4. 4

    Abadie, J. et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys. 7, 962–965 (2011).

    ADS  Article  Google Scholar 

  5. 5

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  7. 7

    Helstrom, C. W. Quantum Detection and Estimation Theory, Mathematics in Science and Engineering Vol. 123 (Academic, 1976).

    MATH  Google Scholar 

  8. 8

    Proakis, J. G. Digital Communications 4th edn (McGraw-Hill, 2000).

    MATH  Google Scholar 

  9. 9

    Tsujino, K. et al. Quantum receiver beyond the standard quantum limit of coherent optical communication. Phys. Rev. Lett. 106, 250503 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Becerra, F. E. et al. Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination. Nature Photon. 7, 147–152 (2013).

    ADS  Article  Google Scholar 

  11. 11

    Jinno, M., Miyamoto, Y. & Hibino, Y. Networks: optical-transport networks in 2015. Nature Photon. 1, 157–159 (2007).

    ADS  Article  Google Scholar 

  12. 12

    Zhou, X. et al. 32 Tb/s (320 × 114 Gb/s) PDM-RZ-8QAM transmission over 580 km of SMF-28 ultra-low-loss fiber, in Proceedings of the National Fiber Optic Engineers Conference (NFOEC) paper PDPB4 (Optical Society of America, 2009).

    Google Scholar 

  13. 13

    Armbrust, M. et al. A view of cloud computing. Commun. ACM 53, 50–58 (2010).

    Article  Google Scholar 

  14. 14

    Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 6, 488–496 (2012).

    ADS  Article  Google Scholar 

  15. 15

    Hillerkuss, D. et al. 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photon. 5, 364–371 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Slavik, R. et al. All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photon. 4, 690–695 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Tong, Z. et al. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nature Photon. 5, 430–436 (2011).

    ADS  Article  Google Scholar 

  18. 18

    Kakande, J. et al. Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nature Photon. 5, 748–752 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Tsukamoto, S., Katoh, K. & Kikuchi, K. Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation. IEEE Photon. Technol. Lett. 18, 1016–1018 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Kikuchi, K. & Tsukamoto, S. Evaluation of sensitivity of the digital coherent receiver. J. Lightwave Technol. 26, 1817–1822 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Dolinar, S. J. An optimum receiver for the binary coherent state quantum channel. MIT Res. Lab. Electron. Quart. Progr. Rep. 111, 115–120 (1973).

    Google Scholar 

  22. 22

    Bondurant, R. S. Near-quantum optimum receivers for the phase-quadrature coherent-state channel. Opt. Lett. 18, 1896–1898 (1993).

    ADS  Article  Google Scholar 

  23. 23

    Izumi, S. et al. Displacement receiver for phase-shift-keyed coherent states. Phys. Rev. A 86, 042328 (2012).

    ADS  Article  Google Scholar 

  24. 24

    Nair, R., Guha, S. & Tan, S.-H. Realizable receivers for discriminating arbitrary coherent-state waveforms and multi-copy quantum states near the quantum limit. Phys. Rev. A 89, 032318 (2014).

    ADS  Article  Google Scholar 

  25. 25

    Cook, R. L., Martin, P. J. & Geremia, J. M. Optical coherent state discrimination using a closed-loop quantum measurement. Nature 446, 774–777 (2007).

    ADS  Article  Google Scholar 

  26. 26

    Chen, J., Habif, J. L., Dutton, Z., Lazarus, R. & Guha, S. Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver. Nature Photon. 6, 374–379 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Wittmann, C. et al. Demonstration of near-optimal discrimination of optical coherent states. Phys. Rev. Lett. 101, 210501 (2008).

    ADS  Article  Google Scholar 

  28. 28

    Muller, C. et al. Quadrature phase shift keying coherent state discrimination via a hybrid receiver. New J. Phys. 14, 083009 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Becerra, F. E. et al. M-ary-state phase-shift-keying discrimination below the homodyne limit. Phys. Rev. A 84, 062324 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Izumi, S., Takeoka, M., Ema, K. & Sasaki, M. Quantum receivers with squeezing and photon-number-resolving detectors for M-ary coherent state discrimination. Phys. Rev. A 87, 042328 (2013).

    ADS  Article  Google Scholar 

  31. 31

    Li, K., Zuo, Y. & Zhu, B. Suppressing the errors due to mode mismatch for M-ary PSK quantum receivers using photon-number-resolving detector. IEEE Photon. Technol. Lett. 25, 2182–2184 (2013).

    ADS  Article  Google Scholar 

  32. 32

    Gerrits, T. et al. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802 (2010).

    ADS  Article  Google Scholar 

  33. 33

    Laiho, K., Cassemiro, K. N., Gross, D. & Silberhorn, C. Probing the negative Wigner function of a pulsed single photon point by point. Phys. Rev. Lett. 105, 253603 (2010).

    ADS  Article  Google Scholar 

  34. 34

    Zhang, L. et al. Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photon. 6, 364–368 (2012).

    ADS  Article  Google Scholar 

  35. 35

    Xiang, G. Y., Higgins, B. L., Berry, D. W., Wiseman, H. M. & Pryde, G. J. Entanglement-enhanced measurement of a completely unknown optical phase. Nature Photon. 5, 43–47 (2011).

    ADS  Article  Google Scholar 

  36. 36

    Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37

    Usuga, M. A. et al. Noise-powered probabilistic concentration of phase information. Nature Phys. 6, 767–771 (2010).

    ADS  Article  Google Scholar 

  38. 38

    Wittmann, C., Andersen, U. L., Takeoka, M., Sych, D. & Leuchs, G. Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector. Phys. Rev. Lett. 104, 100505 (2010).

    ADS  Article  Google Scholar 

  39. 39

    Minář, J. c. v., de Riedmatten, H., Simon, C., Zbinden, H. & Gisin, N. Phase-noise measurements in long-fiber interferometers for quantum-repeater applications. Phys. Rev. A 77, 052325 (2008).

    ADS  Article  Google Scholar 

  40. 40

    Banaszek, K., Radzewicz, C., Wódkiewicz, K. & Krasiński, J. S. Direct measurement of the Wigner function by photon counting. Phys. Rev. A 60, 674–677 (1999).

    ADS  Article  Google Scholar 

  41. 41

    Odenwalder, J. P. Error Control Coding Handbook (Linkabit, 1976).

    Book  Google Scholar 

  42. 42

    Giovannetti, V. et al. Classical capacity of the lossy bosonic channel: the exact solution. Phys. Rev. Lett. 92, 027902 (2004).

    ADS  Article  Google Scholar 

  43. 43

    Yonezawa, H. et al. Quantum-enhanced optical-phase tracking. Science 377, 1514–1517 (2011).

    MathSciNet  MATH  Google Scholar 

  44. 44

    Rosenberg, D., Kerman, A. J., Molnar, R. J. & Dauler, E. A. High-speed and high-efficiency superconducting nanowire single photon detector array. Opt. Express 21, 1440–1447 (2013).

    ADS  Article  Google Scholar 

  45. 45

    Polyakov, S. V., Migdall, A. & Nam, S. W. Real-time data-acquisition platform for pulsed measurements. AIP Conf. Proc. 1327, 505–519 (2011).

    ADS  Article  Google Scholar 

Download references


The authors acknowledge financial support from the Physics Frontier Center at the Joint Quantum Institute. F.E.B. thanks J. Kosloski and J. Goldhar for discussions. The authors also thank S.V. Polyakov, who developed the original FPGA-based platform on which our data acquisition system was built45.

Author information




F.E.B. analysed the theoretical measurement strategy, designed the experimental implementation of the receiver, performed the measurements and analysed the experimental results. J.F. realized the analysis for coded communications. J.F. and A.M. provided assistance and discussions. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to F. E. Becerra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 342 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becerra, F., Fan, J. & Migdall, A. Photon number resolution enables quantum receiver for realistic coherent optical communications. Nature Photon 9, 48–53 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing