Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Writing and reading of an arbitrary optical polarization state in an antiferromagnet

Abstract

The interaction between light and magnetism is considered a promising route to the development of energy-efficient data storage technologies. To date, however, ultrafast optical magnetization control has been limited to a binary process, whereby light in either of two polarization states generates (writes) or adopts (reads) a magnetic bit carrying either a positive or negative magnetization. Here, we report how the fundamental limitation of just two states can be overcome, allowing an arbitrary optical polarization state to be written magnetically. The effect is demonstrated using a three-sublattice antiferromagnet—hexagonal YMnO3. Its three magnetic oscillation eigenmodes are selectively excited by the three polarization eigenstates of the light. The magnetic oscillation state is then transferred back into the polarization state of an optical probe pulse, thus completing an arbitrary optomagnonic write–read cycle.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Writing and reading of an optical polarization state in three-sublattice YMnO3.
Figure 2: Schematics of the experimental set-up.
Figure 3: Experiments for scrutinizing the one-to-one nature of information transfer.
Figure 4: Experimental result for double-pulse excitations.

References

  1. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  2. Koopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).

    Article  ADS  Google Scholar 

  3. Kirilyuk, A., Kimel, A. V. & Rasing, Th. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  4. Takubo, N. et al. Persistent and reversible all-optical phase control in a manganite thin film. Phys. Rev. Lett. 95, 017404 (2005).

    Article  ADS  Google Scholar 

  5. Ju, G. et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 93, 197403 (2004).

    Article  ADS  Google Scholar 

  6. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nature Commun. 3, 666 (2012).

    Article  ADS  Google Scholar 

  7. Van Kampen, M. et al. All-optical probe of coherent spin waves. Phys. Rev. Lett. 88, 227201 (2002).

    Article  ADS  Google Scholar 

  8. Müller, G. M. et al. Magnetization dynamics in optically excited nanostructured nickel films. New J. Phys. 10, 123004 (2008).

    Article  ADS  Google Scholar 

  9. Demokritov, S. O. & Slavin, A. N. Magnonics: From Fundamentals to Applications (Springer, 2013).

    Book  Google Scholar 

  10. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  ADS  Google Scholar 

  11. Hansteen, F., Kimel, A., Kirilyuk, A. & Rasing, Th. Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films. Phys. Rev. Lett. 95, 047402 (2005).

    Article  ADS  Google Scholar 

  12. Kalashnikova, A. M. et al. Impulsive generation of coherent magnons by linearly polarized light in the easy-plane antiferromagnet FeBO3 . Phys. Rev. Lett. 99, 167205 (2007).

    Article  ADS  Google Scholar 

  13. Gridnev, V. N. Phenomenological theory for coherent magnon generation through impulsive stimulated Raman scattering. Phys. Rev. B 77, 094426 (2008).

    Article  ADS  Google Scholar 

  14. Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).

    Article  ADS  Google Scholar 

  15. Nishitani, J., Kozuki, K., Nagashima, T. & Hangyo, M. Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses. Appl. Phys. Lett. 96, 221906 (2010).

    Article  ADS  Google Scholar 

  16. Iida, R. et al. Spectral dependence of photoinduced spin precession in DyFeO3 . Phys. Rev. B 84, 064402 (2011).

    Article  ADS  Google Scholar 

  17. Higuchi, T., Kanda, N., Tamaru, H. & Kuwata-Gonokami, M. Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO. Phys. Rev. Lett. 106, 047401 (2011).

    Article  ADS  Google Scholar 

  18. Kanda, N. et al. The vectorial control of magnetization by light. Nature Commun. 2, 362 (2011).

    Article  ADS  Google Scholar 

  19. Popova, D., Bringer, A. & Blügel, S. Theoretical investigation of the inverse Faraday effect via a stimulated Raman scattering process. Phys. Rev. B 85, 094419 (2012).

    Article  ADS  Google Scholar 

  20. Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2007).

    Google Scholar 

  21. Lorenz, B. Hexagonal manganites–(RMnO3): class (I) multiferroics with strong coupling of magnetism and ferroelectricity. ISRN Condens. Matter Phys. 2013, 497073 (2013).

    Article  Google Scholar 

  22. Penney, T., Berger, P. & Kritiyakirana, K. Far-infrared antiferromagnetic resonance in hexagonal YMnO3 . J. Appl. Phys. 40, 1234–1235 (1969).

    Article  ADS  Google Scholar 

  23. Kadlec, C. et al. Terahertz and infrared spectroscopic evidence of phonon–paramagnon coupling in hexagonal piezomagnetic YMnO3 . Phys. Rev. B 84, 174120 (2011).

    Article  ADS  Google Scholar 

  24. Sato, T. J. et al. Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO3 . Phys. Rev. B 68, 014432 (2003).

    Article  ADS  Google Scholar 

  25. Toulouse, C. et al. Lattice and spin excitations in multiferroic h-YMnO3 . Phys. Rev. B 89, 094415 (2014).

    Article  Google Scholar 

  26. Iliev, M. N. et al. Raman- and infrared-active phonons in hexagonal YMnO3: experiment and lattice-dynamical calculations. Phys. Rev. B 56, 2488–2494 (1997).

    Article  ADS  Google Scholar 

  27. Goian, V. et al. THz and infrared studies of multiferroic hexagonal Y1–xEuxMnO3 (x = 0–0.2) ceramics. Phase Trans. 83, 931–941 (2010).

    Article  Google Scholar 

  28. Frey, J., Frey, R., Flytzanis, C. & Triboulet, R. Theoretical and experimental investigation of nonlinear Faraday processes in diluted magnetic semiconductors. J. Opt. Soc. Am. B 9, 132–142 (1992).

    Article  ADS  Google Scholar 

  29. Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).

    Book  Google Scholar 

  30. Satoh, T. et al. Directional control of spin-wave emission by spatially shaped light. Nature Photon. 6, 662–666 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A.M. Kalashnikova, T.J. Sato and D. Meier for discussions. This work was supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) (T.Sa.).

Author information

Authors and Affiliations

Authors

Contributions

T.Sa. planned the study. R.I. and T.Sa. carried out the experiment. R.I., T.H. and T.Sa. analysed the data. M.F. contributed to their interpretation. T.Sh. supervised the study. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Takuya Satoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 679 kb)

Supplementary movie 1

Supplementary movie 1 (MOV 583 kb)

Supplementary movie 2

Supplementary movie 2 (MOV 176 kb)

Supplementary movie 3

Supplementary movie 3 (MOV 93 kb)

Supplementary movie 4

Supplementary movie 4 (MOV 500 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, T., Iida, R., Higuchi, T. et al. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nature Photon 9, 25–29 (2015). https://doi.org/10.1038/nphoton.2014.273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing