Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Writing and reading of an arbitrary optical polarization state in an antiferromagnet

Abstract

The interaction between light and magnetism is considered a promising route to the development of energy-efficient data storage technologies. To date, however, ultrafast optical magnetization control has been limited to a binary process, whereby light in either of two polarization states generates (writes) or adopts (reads) a magnetic bit carrying either a positive or negative magnetization. Here, we report how the fundamental limitation of just two states can be overcome, allowing an arbitrary optical polarization state to be written magnetically. The effect is demonstrated using a three-sublattice antiferromagnet—hexagonal YMnO3. Its three magnetic oscillation eigenmodes are selectively excited by the three polarization eigenstates of the light. The magnetic oscillation state is then transferred back into the polarization state of an optical probe pulse, thus completing an arbitrary optomagnonic write–read cycle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Writing and reading of an optical polarization state in three-sublattice YMnO3.
Figure 2: Schematics of the experimental set-up.
Figure 3: Experiments for scrutinizing the one-to-one nature of information transfer.
Figure 4: Experimental result for double-pulse excitations.

References

  1. 1

    Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    ADS  Article  Google Scholar 

  2. 2

    Koopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).

    ADS  Article  Google Scholar 

  3. 3

    Kirilyuk, A., Kimel, A. V. & Rasing, Th. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Takubo, N. et al. Persistent and reversible all-optical phase control in a manganite thin film. Phys. Rev. Lett. 95, 017404 (2005).

    ADS  Article  Google Scholar 

  5. 5

    Ju, G. et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 93, 197403 (2004).

    ADS  Article  Google Scholar 

  6. 6

    Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nature Commun. 3, 666 (2012).

    ADS  Article  Google Scholar 

  7. 7

    Van Kampen, M. et al. All-optical probe of coherent spin waves. Phys. Rev. Lett. 88, 227201 (2002).

    ADS  Article  Google Scholar 

  8. 8

    Müller, G. M. et al. Magnetization dynamics in optically excited nanostructured nickel films. New J. Phys. 10, 123004 (2008).

    ADS  Article  Google Scholar 

  9. 9

    Demokritov, S. O. & Slavin, A. N. Magnonics: From Fundamentals to Applications (Springer, 2013).

    Book  Google Scholar 

  10. 10

    Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Hansteen, F., Kimel, A., Kirilyuk, A. & Rasing, Th. Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films. Phys. Rev. Lett. 95, 047402 (2005).

    ADS  Article  Google Scholar 

  12. 12

    Kalashnikova, A. M. et al. Impulsive generation of coherent magnons by linearly polarized light in the easy-plane antiferromagnet FeBO3 . Phys. Rev. Lett. 99, 167205 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Gridnev, V. N. Phenomenological theory for coherent magnon generation through impulsive stimulated Raman scattering. Phys. Rev. B 77, 094426 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Nishitani, J., Kozuki, K., Nagashima, T. & Hangyo, M. Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses. Appl. Phys. Lett. 96, 221906 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Iida, R. et al. Spectral dependence of photoinduced spin precession in DyFeO3 . Phys. Rev. B 84, 064402 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Higuchi, T., Kanda, N., Tamaru, H. & Kuwata-Gonokami, M. Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO. Phys. Rev. Lett. 106, 047401 (2011).

    ADS  Article  Google Scholar 

  18. 18

    Kanda, N. et al. The vectorial control of magnetization by light. Nature Commun. 2, 362 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Popova, D., Bringer, A. & Blügel, S. Theoretical investigation of the inverse Faraday effect via a stimulated Raman scattering process. Phys. Rev. B 85, 094419 (2012).

    ADS  Article  Google Scholar 

  20. 20

    Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2007).

    Google Scholar 

  21. 21

    Lorenz, B. Hexagonal manganites–(RMnO3): class (I) multiferroics with strong coupling of magnetism and ferroelectricity. ISRN Condens. Matter Phys. 2013, 497073 (2013).

    Article  Google Scholar 

  22. 22

    Penney, T., Berger, P. & Kritiyakirana, K. Far-infrared antiferromagnetic resonance in hexagonal YMnO3 . J. Appl. Phys. 40, 1234–1235 (1969).

    ADS  Article  Google Scholar 

  23. 23

    Kadlec, C. et al. Terahertz and infrared spectroscopic evidence of phonon–paramagnon coupling in hexagonal piezomagnetic YMnO3 . Phys. Rev. B 84, 174120 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Sato, T. J. et al. Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO3 . Phys. Rev. B 68, 014432 (2003).

    ADS  Article  Google Scholar 

  25. 25

    Toulouse, C. et al. Lattice and spin excitations in multiferroic h-YMnO3 . Phys. Rev. B 89, 094415 (2014).

    Article  Google Scholar 

  26. 26

    Iliev, M. N. et al. Raman- and infrared-active phonons in hexagonal YMnO3: experiment and lattice-dynamical calculations. Phys. Rev. B 56, 2488–2494 (1997).

    ADS  Article  Google Scholar 

  27. 27

    Goian, V. et al. THz and infrared studies of multiferroic hexagonal Y1–xEuxMnO3 (x = 0–0.2) ceramics. Phase Trans. 83, 931–941 (2010).

    Article  Google Scholar 

  28. 28

    Frey, J., Frey, R., Flytzanis, C. & Triboulet, R. Theoretical and experimental investigation of nonlinear Faraday processes in diluted magnetic semiconductors. J. Opt. Soc. Am. B 9, 132–142 (1992).

    ADS  Article  Google Scholar 

  29. 29

    Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).

    Book  Google Scholar 

  30. 30

    Satoh, T. et al. Directional control of spin-wave emission by spatially shaped light. Nature Photon. 6, 662–666 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank A.M. Kalashnikova, T.J. Sato and D. Meier for discussions. This work was supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) (T.Sa.).

Author information

Affiliations

Authors

Contributions

T.Sa. planned the study. R.I. and T.Sa. carried out the experiment. R.I., T.H. and T.Sa. analysed the data. M.F. contributed to their interpretation. T.Sh. supervised the study. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Takuya Satoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 679 kb)

Supplementary movie 1

Supplementary movie 1 (MOV 583 kb)

Supplementary movie 2

Supplementary movie 2 (MOV 176 kb)

Supplementary movie 3

Supplementary movie 3 (MOV 93 kb)

Supplementary movie 4

Supplementary movie 4 (MOV 500 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Satoh, T., Iida, R., Higuchi, T. et al. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nature Photon 9, 25–29 (2015). https://doi.org/10.1038/nphoton.2014.273

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing