Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Spectroscopy

Nanoscale terahertz spectroscopy

The advent of terahertz spectroscopy schemes that offer single-photon sensitivity, femtosecond time resolution and nanometre spatial resolution is creating new opportunities for investigating ultrafast charge dynamics in semiconductor structures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: State-of-the-art implementation of transient terahertz (THz) time-domain spectroscopy with a single-photon-level signal-to-noise ratio, which allows the THz response from a nanoscale object — an InAs nanowire (blue) on a diamond substrate (green) — to be measured.

References

  1. Eisele, L. et al. Nature Photon. 8, 841–845 10.1038/nphoton.2014.225(2014).

    Article  ADS  Google Scholar 

  2. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1999).

    Book  Google Scholar 

  3. Krausz, F. & Ivanov, M. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  4. Wu, H. J., Nishiyama, Y., Narushima, T., Imura, K. & Okamoto, H. Appl. Phys. Express 5, 062002 (2012).

    Article  ADS  Google Scholar 

  5. Wu, S. W. & Ho, W. Phys. Rev. B. 82, 085444 (2010).

    Article  ADS  Google Scholar 

  6. Cocker, T. L. et al. Nature Photon. 7, 620–625 (2013).

    Article  ADS  Google Scholar 

  7. Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Nature Photon. 4, 869–874 (2010).

    Article  ADS  Google Scholar 

  8. Yoshida, S. et al. Nature Nanotech. 9, 588–593 (2014).

    Article  ADS  Google Scholar 

  9. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Mischa, B. Rev. Mod. Phys. 83, 543–586 (2011).

    Article  ADS  Google Scholar 

  10. Lucas, M. & Riedo, E. Rev. Sci. Instrum. 83, 061101 (2012).

    Article  ADS  Google Scholar 

  11. Zhang, R. et al. Nature 498, 82–86 (2013).

    Article  ADS  Google Scholar 

  12. Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Science 329, 1628–1630 (2010).

    Article  ADS  Google Scholar 

  13. Neacsu, C. C. et al. Nano Lett. 10, 592–596 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemi Shigekawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigekawa, H., Yoshida, S. & Takeuchi, O. Nanoscale terahertz spectroscopy. Nature Photon 8, 815–817 (2014). https://doi.org/10.1038/nphoton.2014.272

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing