Two-dimensional material nanophotonics

Abstract

Two-dimensional materials exhibit diverse electronic properties, ranging from insulating hexagonal boron nitride and semiconducting transition metal dichalcogenides such as molybdenum disulphide, to semimetallic graphene. In this Review, we first discuss the optical properties and applications of various two-dimensional materials, and then cover two different approaches for enhancing their interactions with light: through their integration with external photonic structures, and through intrinsic polaritonic resonances. Finally, we present a narrow-bandgap layered material — black phosphorus — that serendipitously bridges the energy gap between the zero-bandgap graphene and the relatively large-bandgap transition metal dichalcogenides. The plethora of two-dimensional materials and their heterostructures, together with the array of available approaches for enhancing the light–matter interaction, offers the promise of scientific discoveries and nanophotonics technologies across a wide range of the electromagnetic spectrum.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: 2D materials covering a broad spectral range.
Figure 2: Photocurrent-generation mechanisms in graphene.
Figure 3: Optoelectronic properties of semiconducting TMDC monolayers.
Figure 4: Using photonic integration to enhance the interaction between light and 2D materials.
Figure 5: Using polaritonic resonances to enhance the interaction between light and 2D materials.
Figure 6: Bridging the bandgap using BP.

References

  1. 1

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  2. 2

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

  3. 3

    Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

  4. 4

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

  5. 5

    Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

  6. 6

    Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

  7. 7

    Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

  8. 8

    Bao, Q. et al. Broadband graphene polarizer. Nature Photon. 5, 411–415 (2011).

  9. 9

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

  10. 10

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

  11. 11

    Mak, K. F. et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  12. 12

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

  13. 13

    Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

  14. 14

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

  15. 15

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

  16. 16

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

  17. 17

    Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883–887 (2013).

  18. 18

    Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photon. 7, 888–891 (2013).

  19. 19

    Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013).

  20. 20

    Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

  21. 21

    Gan, X. et al. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12, 5626–5631 (2012).

  22. 22

    Majumdar, A., Kim, J., Vuckovic, J. & Wang, F. Electrical control of silicon photonic crystal cavity by graphene. Nano Lett. 13, 515–518 (2013).

  23. 23

    Gan, X. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013).

  24. 24

    Sobhani, A. et al. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 104, 031112 (2014).

  25. 25

    Geim, A. K. & Grigorieva. Van der Waals heterostructures. Nature 499, 419–425 (2014).

  26. 26

    Eda, G. & Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 7, 5660–5665 (2013).

  27. 27

    Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Sol. State Commun. 152, 1341–1349 (2012).

  28. 28

    Xia, F., Yan, H. & Avouris, P. The interaction of light and graphene: Basics, devices, and applications. Proc. IEEE 101, 1717–1731 (2013).

  29. 29

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  30. 30

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

  31. 31

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

  32. 32

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

  33. 33

    Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

  34. 34

    Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

  35. 35

    Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

  36. 36

    Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

  37. 37

    Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

  38. 38

    Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2009).

  39. 39

    Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

  40. 40

    Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

  41. 41

    George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

  42. 42

    Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).

  43. 43

    Kim, R., Perebeinos, V. & Avouris, P. Relaxation of optically excited carriers in graphene. Phys. Rev. B 84, 075449 (2011).

  44. 44

    Winzer, T., Knorr, A. & Malić, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

  45. 45

    Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248–252 (2013).

  46. 46

    Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

  47. 47

    Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

  48. 48

    Shi, S.-F. et al. Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating. Nano Lett. 14, 1578–1582 (2014).

  49. 49

    Tan, Y.-W., Zhang, Y., Stormer, H. L. & Kim, P. Temperature dependent electron transport in graphene. Eur. Phys. J. Spec. Top. 148, 15–18 (2007).

  50. 50

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013).

  51. 51

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2 . Nano Lett. 13, 5361–5366 (2013).

  52. 52

    Ramasubramaniam, A., Naveh, D. & Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84, 205325 (2011).

  53. 53

    Duerloo, K. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nature Commun. 5, 4214 (2014).

  54. 54

    Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

  55. 55

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nature Nanotech. 9, 268–272 (2014).

  56. 56

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenides. Nature Nanotech. 9, 262–267 (2014).

  57. 57

    Pospischil, A., Furchi, M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nature Nanotech. 9, 257–261 (2014).

  58. 58

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

  59. 59

    Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J. & Shih, C.-K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states and edge band bending. Nano Lett. 14, 2243–2247 (2014).

  60. 60

    Chernikov, A. et al. Exciton binding energy and non-hydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

  61. 61

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2012).

  62. 62

    Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).

  63. 63

    Yu, H., Liu, G.-B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nature Commun. 5, 3876 (2014).

  64. 64

    Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

  65. 65

    Fortin, E. & Sears, W. M. Photovoltaic effect and optical absorption in MoS2 . J. Phys. Chem. Solids 43, 881–884 (1982).

  66. 66

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

  67. 67

    Konstantatos, G. et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

  68. 68

    Roy, K. et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotech. 8, 826–830 (2013).

  69. 69

    Maier, S. Plasmonics: Fundamentals and Applications 1st edn (Springer, 2007).

  70. 70

    Wunsch, B., Stauber, T. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

  71. 71

    Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

  72. 72

    Abedinpour, S. et al. Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets. Phys. Rev. B 84, 045429 (2011).

  73. 73

    Thongrattanasiri, S., Manjavacas, A. & Garcia de Abajo, F. J. Quantum finite-size effects in graphene plasmons. ACS Nano 6, 1766–1775 (2012).

  74. 74

    Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

  75. 75

    Koppens, F. H. L., Chang, D. E. & Garcia de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

  76. 76

    Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

  77. 77

    Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

  78. 78

    Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

  79. 79

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

  80. 80

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

  81. 81

    Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

  82. 82

    Brar, V. W., Jang, M. S., Sherrott, M., Lopez, J. J. & Atwater, H. A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

  83. 83

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

  84. 84

    Liu, Y. & Willis, R. F. Plasmon–phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B 81, 081406 (2010).

  85. 85

    Brar, V. W. et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

  86. 86

    Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

  87. 87

    Liu, H. et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

  88. 88

    Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

  89. 89

    Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Commun. 5, 4458 (2014).

  90. 90

    Koenig, S., Doganov, R., Schmidt, H., Castro Neto, A. & Ozyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

  91. 91

    Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

  92. 92

    Qiao, J., Kong, X., Hu, Z., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Commun. 5, 4475 (2014).

  93. 93

    Low, T. et al. Tunable optical properties of multilayers black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

  94. 94

    Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014).

  95. 95

    Fei, R. et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. http://doi.org/wxz (2014).

  96. 96

    Yu, L. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055–3063 (2014).

  97. 97

    Osters, O. et al. Synthesis and identification of metastable compounds: Black arsenic — science or fiction? Angew. Chemie 51, 2994–2997 (2012).

Download references

Acknowledgements

We thank X. Xu at the University of Washington, Seattle and M. Dresselhaus at Massachusetts Institute of Technology for insightful comments. We would also like to thank T. Low at the University of Minnesota for his input at the early stage of this project and L. Wang at the University of Southern California for designing Fig. 6c,d. F.X. acknowledges support from the Office of Naval Research (N00014-14-1-0565), the Air Force Office of Scientific Research (FA9550-14-1-0277) and the National Science Foundation (CRISP NSF MRSEC DMR-1119826). H.W. acknowledges support from the Army Research Laboratory (W911NF-14-2-0113). D.X. acknowledges support from the Department of Energy (SC0012509), the Air Force Office of Scientific Research (FA9550-14-1-0277), and the National Science Foundation (EFRI-1433496).

Author information

F.X. and H.W. led the project. All authors contributed significantly to the preparation of the manuscript.

Correspondence to Fengnian Xia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, F., Wang, H., Xiao, D. et al. Two-dimensional material nanophotonics. Nature Photon 8, 899–907 (2014). https://doi.org/10.1038/nphoton.2014.271

Download citation

Further reading