Review Article | Published:

Manipulating quantum paths for novel attosecond measurement methods

Nature Photonics volume 8, pages 187194 (2014) | Download Citation

Abstract

Sources of attosecond-duration light pulses provide the fastest time resolutions available today for observing ultrafast phenomena in atoms, molecules and condensed matter. The measurement of such pulse durations is challenging because the spectrum lies in the vacuum ultraviolet or soft X-ray range. Two classes of pulse duration measurements now exist; they are classified according to whether the measurement is performed in the generating medium or in a second medium. The first measurement class is called 'in situ' and depends on gently perturbing the electron responsible for attosecond pulse formation. The second measurement class, which we refer to as 'ex situ', takes place in a second medium in which photoelectrons are produced by the attosecond pulses; a synchronized laser field perturbs the photoelectron spectrum. This Review compares and contrasts these two approaches for measuring attosecond pulses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Ultrafast electron diffraction and direct observation of transient structures in a chemical reaction. Proc. Natl Acad. Sci. 96, 338–342 (1999).

  2. 2.

    , , & An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).

  3. 3.

    Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, 1994).

  4. 4.

    et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).

  5. 5.

    et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

  6. 6.

    et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).

  7. 7.

    & Attosecond science. Nature Phys. 3, 381–387 (2007).

  8. 8.

    The future of attosecond spectroscopy. Science 317, 766–769 (2007).

  9. 9.

    & Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

  10. 10.

    , , & Attosecond physics. J. Phys. B 39, R1 (2006).

  11. 11.

    , & High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).

  12. 12.

    Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

  13. 13.

    , , , & Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

  14. 14.

    , & Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

  15. 15.

    , & Phase of the atomic polarization in high-order harmonic generation. Phys. Rev. A 52, 4747–4754 (1995).

  16. 16.

    , , & Generalized phase-matching conditions for high harmonics: the role of field-gradient forces. Phys. Rev. A 55, 3204–3210 (1997).

  17. 17.

    et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

  18. 18.

    , , , & Quantum theory of attosecond XUV pulse measurement by laser dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002).

  19. 19.

    & Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

  20. 20.

    et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

  21. 21.

    et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

  22. 22.

    et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

  23. 23.

    , & Temporal characterization of attosecond XUV fields. J. Mod. Opt. 52, 339–360 (2005).

  24. 24.

    et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

  25. 25.

    , , , & Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys. Rev. A 69, 051805 (2004).

  26. 26.

    et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).

  27. 27.

    , , , & Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

  28. 28.

    , , & Calculation of the background emitted during high-harmonic generation. Phys. Rev. A 45, 3347–3349 (1992).

  29. 29.

    et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

  30. 30.

    et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nature Phys. 9, 159–163 (2013).

  31. 31.

    et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

  32. 32.

    , , , & Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

  33. 33.

    et al. Analytic description of the high-energy plateau in harmonic generation by atoms: can the harmonic power increase with increasing laser wavelengths? Phys. Rev. Lett. 102, 243901 (2009).

  34. 34.

    , , & Analytic formulae for high harmonic generation. J. Phys. B 42, 035601 (2009).

  35. 35.

    , & Extraction of the species-dependent dipole amplitude and phase from high-order harmonic spectra in rare-gas atoms. Phys. Rev. A 78, 023814 (2008).

  36. 36.

    , , , & Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

  37. 37.

    , , & Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation. Phys. Rev. A 76, 013414 (2007).

  38. 38.

    , & Quantitative rescattering theory of high-order harmonic generation for polyatomic molecules. Phys. Rev. A 87, 063406 (2013).

  39. 39.

    Theory of atomic photoionization. In Mehlhorn, W. (ed.) Handbuch Der Physik 31, 1–121 (Springer, 1982).

  40. 40.

    Photoelectron Spectroscopy: Principles and Applications (Springer, 2003).

  41. 41.

    , & Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 91, 2008 (1986).

  42. 42.

    et al. Probing orbital structure of polyatomic molecules by high-order harmonic generation. Phys. Rev. Lett. 98, 203007 (2007).

  43. 43.

    , , & High harmonic generation from multiple orbitals in N2. Science 322, 1232–1235 (2008).

  44. 44.

    et al. High harmonic generation spectroscopy of hydrocarbons. App. Phys. Lett. 97, 241103 (2010).

  45. 45.

    et al. Generalized molecular orbital tomography. Nature Phys. 7, 822–826 (2011).

  46. 46.

    et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008).

  47. 47.

    & Experimental observation of revival structures in picosecond laser-induced alignment of I2. Phys. Rev. Lett. 87, 153902 (2001).

  48. 48.

    & Colloquium: Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

  49. 49.

    , , & Orientation dependence of high-order harmonic generation in molecules. Phys. Rev. A 67, 023819 (2003).

  50. 50.

    et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

  51. 51.

    et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. Phys. Rev. Lett. 102, 073902 (2009).

  52. 52.

    et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Phys. 7, 464–467 (2011).

  53. 53.

    , & Extended photoionization calculations for xenon. Phys. Rev. A 40, 5052–5057 (1989).

  54. 54.

    et al. Subshell photoionization of Xe between 40 and 1000 eV. Phys. Rev. A 39, 3902–3911 (1989).

  55. 55.

    , , & Xe 5s, 5p correlation satellites in the region of strong interchannel interactions, 28—75 eV. Phys. Rev. A 30, 812–819 (1984).

  56. 56.

    et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

  57. 57.

    , & Attosecond pulse trains using high–order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

  58. 58.

    , & High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

  59. 59.

    , & Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

  60. 60.

    , , & Characterizing ultrabroadband attosecond lasers. Opt. Express 18, 13006–13016 (2010).

  61. 61.

    et al. Atomic transient recorder. Nature 427, 817–821 (2004).

  62. 62.

    et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

  63. 63.

    et al. Synthesized light transients. Science 334, 195–200 (2011).

  64. 64.

    et al. Delay in photoemission. Science 328, 1658–1662 (2010).

  65. 65.

    & Delay in atomic photoionization. Phys. Rev. Lett. 105, 233002 (2010).

  66. 66.

    , , , & Complete temporal reconstruction of attosecond high-harmonic pulse trains. New J. Phys. 12, 083019 (2010).

  67. 67.

    et al. Attosecond synchronization of high-order harmonics from midinfrared drivers. Phys. Rev. Lett. 102, 093002 (2009).

  68. 68.

    et al. Petahertz optical oscilloscope. Nature Photon. 7, 958–962 (2013).

  69. 69.

    et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

  70. 70.

    , & Phase dependence of (N+1)-color (N>1) ir-uv photoionization of atoms with higher harmonics. Phys. Rev. A 54, 721–728 (1996).

  71. 71.

    et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

  72. 72.

    et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

  73. 73.

    et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

  74. 74.

    et al. Isolated attosecond pulses from ionization gating of high-harmonic emission. Chem. Phys. 366, 9–14 (2009).

  75. 75.

    et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photon. 4, 875–879 (2010).

  76. 76.

    et al. Attosecond lighthouses from plasma mirrors. Nature Photon. 6, 829–833 (2012).

  77. 77.

    et al. Photonic streaking of attosecond pulse trains. Nature Photon. 7, 651–656 (2013).

  78. 78.

    et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).

  79. 79.

    & Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

  80. 80.

    , , & Attosecond streaking enables the measurement of quantum phase. Phys. Rev. Lett. 105, 073001 (2010).

  81. 81.

    & Streaking and Wigner time delays in photoemission from atoms and surfaces. Phys. Rev. A 84, 033401 (2011).

  82. 82.

    & How accurate is the attosecond streak camera? Phys. Rev. Lett. 107, 213605 (2011).

  83. 83.

    et al. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 414, 53–64 (2013).

  84. 84.

    , & Quantum mechanical approach to probing the birth of attosecond pulses using a two-colour field. J. Phys. B 44, 095602 (2011).

  85. 85.

    et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nature Photon. 5, 475–479 (2011).

  86. 86.

    et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

  87. 87.

    et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

  88. 88.

    et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

  89. 89.

    et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

  90. 90.

    Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000).

  91. 91.

    , , & Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

Download references

Acknowledgements

The authors gratefully acknowledge funding from NRC, AFOSR, NSERC and CFI.

Author information

Affiliations

  1. Joint Attosecond Science Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa ON K1A 0R6, Canada

    • Kyung Taec Kim
    • , D. M. Villeneuve
    •  & P. B. Corkum

Authors

  1. Search for Kyung Taec Kim in:

  2. Search for D. M. Villeneuve in:

  3. Search for P. B. Corkum in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to P. B. Corkum.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2014.26

Further reading