Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Manipulating quantum paths for novel attosecond measurement methods

Abstract

Sources of attosecond-duration light pulses provide the fastest time resolutions available today for observing ultrafast phenomena in atoms, molecules and condensed matter. The measurement of such pulse durations is challenging because the spectrum lies in the vacuum ultraviolet or soft X-ray range. Two classes of pulse duration measurements now exist; they are classified according to whether the measurement is performed in the generating medium or in a second medium. The first measurement class is called 'in situ' and depends on gently perturbing the electron responsible for attosecond pulse formation. The second measurement class, which we refer to as 'ex situ', takes place in a second medium in which photoelectrons are produced by the attosecond pulses; a synchronized laser field perturbs the photoelectron spectrum. This Review compares and contrasts these two approaches for measuring attosecond pulses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron trajectories involved in high-harmonic generation.
Figure 2: Second-harmonic field leads to even-harmonic emission.
Figure 3: Photoionization vs. high-harmonic generation.
Figure 4: Ex situ and in situ measurements.
Figure 5: Attosecond pulse and optical field measurements with ex situ and in situ measurements.

Similar content being viewed by others

References

  1. Cao, J., Ihee, H. & Zewail, A. H. Ultrafast electron diffraction and direct observation of transient structures in a chemical reaction. Proc. Natl Acad. Sci. 96, 338–342 (1999).

    ADS  Google Scholar 

  2. Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. J. D. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).

    Article  ADS  Google Scholar 

  3. Zewail, A. H. Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, 1994).

    Google Scholar 

  4. Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).

    ADS  Google Scholar 

  5. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    ADS  Google Scholar 

  6. Zhao, K. et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).

    ADS  Google Scholar 

  7. Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    ADS  Google Scholar 

  8. Bucksbaum, P. H. The future of attosecond spectroscopy. Science 317, 766–769 (2007).

    ADS  Google Scholar 

  9. Krausz, F. & Ivanov, M. Y. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Google Scholar 

  10. Scrinzi, A., Ivanov, M. Y., Kienberger, R. & Villeneuve, D. M. Attosecond physics. J. Phys. B 39, R1 (2006).

    Google Scholar 

  11. Krause, J. L., Schafer, K. J. & Kulander, K. C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).

    ADS  Google Scholar 

  12. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Google Scholar 

  13. Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Google Scholar 

  14. Salières, P., L'Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

    ADS  Google Scholar 

  15. Lewenstein, M., Salières, P. & L'Huillier, A. Phase of the atomic polarization in high-order harmonic generation. Phys. Rev. A 52, 4747–4754 (1995).

    ADS  Google Scholar 

  16. Balcou, P., Salières, P., L'Huillier, A. & Lewenstein, M. Generalized phase-matching conditions for high harmonics: the role of field-gradient forces. Phys. Rev. A 55, 3204–3210 (1997).

    ADS  Google Scholar 

  17. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Google Scholar 

  18. Kitzler, M., Milosevic, N., Scrinzi, A., Krausz, F. & Brabec, T. Quantum theory of attosecond XUV pulse measurement by laser dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002).

    ADS  Google Scholar 

  19. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    ADS  Google Scholar 

  20. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    ADS  Google Scholar 

  21. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    ADS  Google Scholar 

  22. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    ADS  Google Scholar 

  23. Quéré, F., Mairesse, Y. & Itatani, J. Temporal characterization of attosecond XUV fields. J. Mod. Opt. 52, 339–360 (2005).

    ADS  Google Scholar 

  24. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    ADS  Google Scholar 

  25. Kim, K. T., Kim, C. M., Baik, M.-G., Umesh, G. & Nam, C. H. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys. Rev. A 69, 051805 (2004).

    ADS  Google Scholar 

  26. López-Martens, R. et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).

    ADS  Google Scholar 

  27. Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Google Scholar 

  28. Burnett, K., Reed, V. C., Cooper, J. & Knight, P. L. Calculation of the background emitted during high-harmonic generation. Phys. Rev. A 45, 3347–3349 (1992).

    ADS  Google Scholar 

  29. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

    ADS  Google Scholar 

  30. Kim, K. T. et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nature Phys. 9, 159–163 (2013).

    ADS  Google Scholar 

  31. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    ADS  Google Scholar 

  32. Le, A.-T., Lucchese, R. R., Tonzani, S., Morishita, T. & Lin, C. D. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

    ADS  Google Scholar 

  33. Frolov, M. V. et al. Analytic description of the high-energy plateau in harmonic generation by atoms: can the harmonic power increase with increasing laser wavelengths? Phys. Rev. Lett. 102, 243901 (2009).

    ADS  Google Scholar 

  34. Frolov, M. V., Manakov, N. L., Sarantseva, T. S. & Starace, A. F. Analytic formulae for high harmonic generation. J. Phys. B 42, 035601 (2009).

    ADS  Google Scholar 

  35. Le, A.-T., Morishita, T. & Lin, C. D. Extraction of the species-dependent dipole amplitude and phase from high-order harmonic spectra in rare-gas atoms. Phys. Rev. A 78, 023814 (2008).

    ADS  Google Scholar 

  36. Le, A.-T., Lucchese, R. R., Tonzani, S., Morishita, T. & Lin, C. D. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

    ADS  Google Scholar 

  37. Le, V.-H., Le, A.-T., Xie, R.-H. & Lin, C. D. Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation. Phys. Rev. A 76, 013414 (2007).

    ADS  Google Scholar 

  38. Le, A.-T., Lucchese, R. R. & Lin, C. D. Quantitative rescattering theory of high-order harmonic generation for polyatomic molecules. Phys. Rev. A 87, 063406 (2013).

    ADS  Google Scholar 

  39. Starace, A. F. Theory of atomic photoionization. In Mehlhorn, W. (ed.) Handbuch Der Physik 31, 1–121 (Springer, 1982).

    Google Scholar 

  40. Hüfner, S. Photoelectron Spectroscopy: Principles and Applications (Springer, 2003).

    Google Scholar 

  41. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 91, 2008 (1986).

    Google Scholar 

  42. Torres, R. et al. Probing orbital structure of polyatomic molecules by high-order harmonic generation. Phys. Rev. Lett. 98, 203007 (2007).

    ADS  Google Scholar 

  43. McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. & Gühr, M. High harmonic generation from multiple orbitals in N2 . Science 322, 1232–1235 (2008).

    ADS  Google Scholar 

  44. Vozzi, C. et al. High harmonic generation spectroscopy of hydrocarbons. App. Phys. Lett. 97, 241103 (2010).

    ADS  Google Scholar 

  45. Vozzi, C. et al. Generalized molecular orbital tomography. Nature Phys. 7, 822–826 (2011).

    ADS  Google Scholar 

  46. Li, W. et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008).

    ADS  Google Scholar 

  47. Rosca-Pruna, F. & Vrakking, M. J. J. Experimental observation of revival structures in picosecond laser-induced alignment of I2 . Phys. Rev. Lett. 87, 153902 (2001).

    ADS  Google Scholar 

  48. Stapelfeldt, H. & Seideman, T. Colloquium: Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

    ADS  Google Scholar 

  49. Lein, M., Corso, P. P., Marangos, J. P. & Knight, P. L. Orientation dependence of high-order harmonic generation in molecules. Phys. Rev. A 67, 023819 (2003).

    ADS  Google Scholar 

  50. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  Google Scholar 

  51. Zhou, X. et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. Phys. Rev. Lett. 102, 073902 (2009).

    ADS  Google Scholar 

  52. Shiner, A. D. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Phys. 7, 464–467 (2011).

    ADS  Google Scholar 

  53. Kutzner, M., Radojević, V. & Kelly, H. P. Extended photoionization calculations for xenon. Phys. Rev. A 40, 5052–5057 (1989).

    ADS  Google Scholar 

  54. Becker, U. et al. Subshell photoionization of Xe between 40 and 1000 eV. Phys. Rev. A 39, 3902–3911 (1989).

    ADS  Google Scholar 

  55. Fahlman, A., Krause, M. O., Carlson, T. A. & Svensson, A. Xe 5s, 5p correlation satellites in the region of strong interchannel interactions, 28—75 eV. Phys. Rev. A 30, 812–819 (1984).

    ADS  Google Scholar 

  56. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    ADS  Google Scholar 

  57. Antoine, P., L'Huillier, A. & Lewenstein, M. Attosecond pulse trains using high–order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    ADS  Google Scholar 

  58. Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

    ADS  Google Scholar 

  59. Corkum, P. B., Burnett, N. H. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    ADS  Google Scholar 

  60. Chini, M., Gilbertson, S., Khan, S. D. & Chang, Z. Characterizing ultrabroadband attosecond lasers. Opt. Express 18, 13006–13016 (2010).

    ADS  Google Scholar 

  61. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    ADS  Google Scholar 

  62. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    ADS  Google Scholar 

  63. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    ADS  Google Scholar 

  64. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Google Scholar 

  65. Kheifets, A. S. & Ivanov, I. A. Delay in atomic photoionization. Phys. Rev. Lett. 105, 233002 (2010).

    ADS  Google Scholar 

  66. Kim, K. T., Ko, D. H., Park, J., Tosa, V. & Nam, C. H. Complete temporal reconstruction of attosecond high-harmonic pulse trains. New J. Phys. 12, 083019 (2010).

    Google Scholar 

  67. Doumy, G. et al. Attosecond synchronization of high-order harmonics from midinfrared drivers. Phys. Rev. Lett. 102, 093002 (2009).

    ADS  Google Scholar 

  68. Kim, K. T. et al. Petahertz optical oscilloscope. Nature Photon. 7, 958–962 (2013).

    ADS  Google Scholar 

  69. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    ADS  Google Scholar 

  70. Véniard, V., Taïeb, R. & Maquet, A. Phase dependence of (N+1)-color (N>1) ir-uv photoionization of atoms with higher harmonics. Phys. Rev. A 54, 721–728 (1996).

    ADS  Google Scholar 

  71. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    ADS  Google Scholar 

  72. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    ADS  Google Scholar 

  73. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    ADS  Google Scholar 

  74. Abel, M. J. et al. Isolated attosecond pulses from ionization gating of high-harmonic emission. Chem. Phys. 366, 9–14 (2009).

    Google Scholar 

  75. Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photon. 4, 875–879 (2010).

    ADS  Google Scholar 

  76. Wheeler, J. A. et al. Attosecond lighthouses from plasma mirrors. Nature Photon. 6, 829–833 (2012).

    ADS  Google Scholar 

  77. Kim, K. T. et al. Photonic streaking of attosecond pulse trains. Nature Photon. 7, 651–656 (2013).

    ADS  Google Scholar 

  78. Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).

    ADS  Google Scholar 

  79. Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

    ADS  Google Scholar 

  80. Yakovlev, V. S., Gagnon, J., Karpowicz, N. & Krausz, F. Attosecond streaking enables the measurement of quantum phase. Phys. Rev. Lett. 105, 073001 (2010).

    ADS  Google Scholar 

  81. Zhang, C.-H. & Thumm, U. Streaking and Wigner time delays in photoemission from atoms and surfaces. Phys. Rev. A 84, 033401 (2011).

    ADS  Google Scholar 

  82. Ivanov, M. & Smirnova, O. How accurate is the attosecond streak camera? Phys. Rev. Lett. 107, 213605 (2011).

    ADS  Google Scholar 

  83. Dahlström, J. M. et al. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 414, 53–64 (2013).

    Google Scholar 

  84. Dahlström, J., L'Huillier, A. & Mauritsson, J. Quantum mechanical approach to probing the birth of attosecond pulses using a two-colour field. J. Phys. B 44, 095602 (2011).

    ADS  Google Scholar 

  85. Huang, S.-W. et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nature Photon. 5, 475–479 (2011).

    ADS  Google Scholar 

  86. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    ADS  Google Scholar 

  87. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Google Scholar 

  88. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    ADS  Google Scholar 

  89. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    ADS  Google Scholar 

  90. Mukamel, S. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000).

    ADS  Google Scholar 

  91. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from NRC, AFOSR, NSERC and CFI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Corkum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Villeneuve, D. & Corkum, P. Manipulating quantum paths for novel attosecond measurement methods. Nature Photon 8, 187–194 (2014). https://doi.org/10.1038/nphoton.2014.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing