Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Attosecond molecular dynamics: fact or fiction?

Abstract

The emerging application of attosecond techniques to molecular systems allows the role of electronic coherence in the control of chemical reactions to be investigated. Prompt ionization of molecules by an attosecond pulse may induce charge migration across a molecular structure on attosecond to few-femtosecond timescales, thereby possibly determining the subsequent relaxation pathways that a molecule may take. We discuss how proposals for this 'charge-directed reactivity' fit within the current understanding of quantum control and review the current state of the art of attosecond molecular science. Specifically, we review the role of electronic coherence and coupling of the electronic and nuclear degrees of freedom in high-harmonic spectroscopy and in the first attosecond pump–probe experiments on molecular systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of small biomolecules discussed in this Review.
Figure 2: Ultrafast charge migration in the Gly–Gly–NH–CH3 oligopeptide following sudden ionization.
Figure 3: Explanation of time–energy mapping in high-harmonic generation.
Figure 4: Electron localization proved to be a useful observable in some of the early attosecond pump–probe experiments.

Similar content being viewed by others

References

  1. Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. Annalen der Physik 389, 457–484 (1927).

    ADS  MATH  Google Scholar 

  2. Butler, L. J. Chemical reaction dynamics beyond the Born-Oppenheimer approximation. Annu. Rev. Phys. Chem. 49, 125–171 (1998).

    ADS  Google Scholar 

  3. Hartree, D. R. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Math. Proc. Cambridge Phil. Soc. 24, 89–110 (1928).

    ADS  MATH  Google Scholar 

  4. Domcke, W. & Yarkony, D. R. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63, 325–352 (2012).

    ADS  Google Scholar 

  5. Ashfold, M. N. R., Cronin, B., Devine, A. L., Dixon, R. N. & Nix, M. G. D. The role of πσ* excited states in the photodissociation of heteroaromatic molecules. Science 312, 1637–1640 (2006).

    ADS  Google Scholar 

  6. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Google Scholar 

  7. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  Google Scholar 

  8. Remacle, F., Levine, R. D., Schlag, E. W. & Weinkauf, R. Electronic control of site selective reactivity: a model combining charge migration and dissociation. J. Phys. Chem. A 103, 10149–10158 (1999).

    Google Scholar 

  9. Weinkauf, R., Schanen, P., Yang, D., Soukara, S. & Schlag, E. W. Elementary processes in peptides: electron mobility and dissociation in peptide cations in the gas phase. J. Phys. Chem. 99, 11255–11265 (1995).

    Google Scholar 

  10. Breidbach, J. & Cederbaum, L. S. Migration of holes: formalism, mechanisms, and illustrative applications. J. Chem. Phys. 118, 3983 (2003).

    ADS  Google Scholar 

  11. Remacle, F. & Levine, R. D. An electronic time scale in chemistry. Proc. Natl Acad. Sci. USA 103, 6793–6798 (2006).

    Article  ADS  Google Scholar 

  12. Brumer, P. & Shapiro, M. One photon mode selective control of reactions by rapid or shaped laser pulses: an emperor without clothes. Chem. Phys. 139, 221–228 (1989).

    Google Scholar 

  13. Prokhorenko, V. I. et al. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006).

    ADS  Google Scholar 

  14. Lehr, L., Horneff, T., Weinkauf, R. & Schlag, E. W. Femtosecond dynamics after ionization: 2-phenylethyl-N, N-dimethylamine as a model system for nonresonant downhill charge transfer in peptides. J. Phys. Chem. A 109, 8074–8080 (2005).

    Google Scholar 

  15. Weinkauf, R. et al. Highly efficient charge transfer in peptide cations in the gas phase: threshold effects and mechanism. J. Phys. Chem. 100, 18567–18585 (1996).

    Google Scholar 

  16. Weinkauf, R., Schlag, E. W., Martinez, T. J. & Levine, R. D. Nonstationary electronic states and site-selective reactivity. J. Phys. Chem. A 101, 7702–7710 (1997).

    Google Scholar 

  17. Cederbaum, L. S. & Zobeley, J. Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307, 205–210 (1999).

    ADS  Google Scholar 

  18. Kuleff, A. I., Lünnemann, S. & Cederbaum, L. S. Electron-correlation-driven charge migration in oligopeptides. Chem. Phys. 414, 100–105 (2013).

    Google Scholar 

  19. Breidbach, J. & Cederbaum, L. S. Universal attosecond response to the removal of an electron. Phys. Rev. Lett. 94, 033901 (2005).

    ADS  Google Scholar 

  20. Hennig, H., Breidbach, J. & Cederbaum, L. S. Electron correlation as the driving force for charge transfer: charge migration following ionization in N-methyl acetamide. J. Phys. Chem. A 109, 409–414 (2005).

    Google Scholar 

  21. Kuleff, A. I. & Cederbaum, L. S. Charge migration in different conformers of glycine: the role of nuclear geometry. Chem. Phys. 338, 320–328 (2007).

    Google Scholar 

  22. Niikura, H. et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

    ADS  Google Scholar 

  23. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    ADS  Google Scholar 

  24. Lein, M. Molecular imaging using recolliding electrons. J. Phys. B 40, R135 (2007).

    ADS  Google Scholar 

  25. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Google Scholar 

  26. Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    ADS  Google Scholar 

  27. Brunel, F. Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987).

    ADS  Google Scholar 

  28. Kuchiev, M. Y. Atomic antenna. JETP Lett. 45, 404–406 (1987).

    ADS  Google Scholar 

  29. Blaga, C. I. et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

    ADS  Google Scholar 

  30. Spanner, M., Smirnova, O., Corkum, P. B. & Ivanov, M. Y. Reading diffraction images in strong field ionization of diatomic molecules. J. Phys. B 37, L243–L250 (2004).

    ADS  Google Scholar 

  31. Lein, M., Hay, N., Velotta, R., Marangos, J. P. & Knight, P. L. Interference effects in high-order harmonic generation with molecules. Phys. Rev. A 66, 023805 (2002).

    ADS  Google Scholar 

  32. Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

    ADS  Google Scholar 

  33. Le, A.-T., Lucchese, R. R., Tonzani, S., Morishita, T. & Lin, C. D. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

    ADS  Google Scholar 

  34. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

    ADS  Google Scholar 

  35. Lin, C. D., Le, A.-T., Chen, Z., Morishita, T. & Lucchese, R. Strong-field rescattering physics—self-imaging of a molecule by its own electrons. J. Phys. B 43, 122001 (2010).

    ADS  Google Scholar 

  36. Frolov, M. V., Manakov, N. L., Sarantseva, T. S. & Starace, A. F. Analytic confirmation that the factorized formula for harmonic generation involves the exact photorecombination cross section. Phys. Rev. A 83, 043416 (2011).

    ADS  Google Scholar 

  37. Frolov, M. V. et al. Analytic description of the high-energy plateau in harmonic generation by atoms: can the harmonic power increase with increasing laser wavelengths? Phys. Rev. Lett. 102, 243901 (2009).

    ADS  Google Scholar 

  38. Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

    ADS  Google Scholar 

  39. Hickstein, D. D. et al. Direct visualization of laser-driven electron multiple scattering and tunneling distance in strong-field ionization. Phys. Rev. Lett. 109, 073004 (2012).

    ADS  Google Scholar 

  40. Huismans, Y. et al. Scaling laws for photoelectron holography in the midinfrared wavelength regime. Phys. Rev. Lett. 109, 013002 (2012).

    ADS  Google Scholar 

  41. Bian, X.-B. et al. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses. Phys. Rev. A 84, 043420 (2011).

    ADS  Google Scholar 

  42. Korneev, Ph. A. et al. Interference carpets in above-threshold ionization: from the Coulomb-free to the Coulomb-dominated regime. Phys. Rev. Lett. 108, 223601 (2012).

    ADS  Google Scholar 

  43. Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    ADS  Google Scholar 

  44. Pfeiffer, A. N. et al. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. Nature Phys. 8, 76–80 (2012).

    ADS  Google Scholar 

  45. Pfeiffer, A. N. et al. Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit. Phys. Rev. Lett. 109, 083002 (2012).

    ADS  Google Scholar 

  46. Pfeiffer, A. N. et al. Breakdown of the independent electron approximation in sequential double ionization. New J. Phys. 13, 093008 (2011).

    ADS  Google Scholar 

  47. Boge, R. et al. Probing nonadiabatic effects in strong-field tunnel ionization. Phys. Rev. Lett. 111, 103003 (2013).

    ADS  Google Scholar 

  48. Paulus, G. G. et al. Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories. Phys. Rev. Lett. 84, 3791–3794 (2000).

    ADS  Google Scholar 

  49. Goreslavski, S. P., Paulus, G. G., Popruzhenko, S. V. & Shvetsov-Shilovski, N. I. Coulomb asymmetry in above-threshold ionization. Phys. Rev. Lett. 93, 233002 (2004).

    ADS  Google Scholar 

  50. Martiny, C. P. J., Abu-Samha, M. & Madsen, L. B. Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses. J. Phys. B 42, 161001 (2009).

    ADS  Google Scholar 

  51. Mur, V. D., Popruzhenko, S. V. & Popov, V. S. Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (the case of elliptic polarization). J. Exp. Theoret. Phys. 92, 777–788 (2001).

    ADS  Google Scholar 

  52. Barth, I. & Smirnova, O. Nonadiabatic tunneling in circularly polarized laser fields: physical picture and calculations. Phys. Rev. A 84, 063415 (2011).

    ADS  Google Scholar 

  53. Torlina, L. & Smirnova, O. Time-dependent analytical R-matrix approach for strong-field dynamics. I. One-electron systems. Phys. Rev. A 86, 043408 (2012).

    ADS  Google Scholar 

  54. Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Google Scholar 

  55. L'Huillier, A. & Balcou, Ph. High-order harmonic-generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993).

    ADS  Google Scholar 

  56. Salières, P., L'Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

    ADS  Google Scholar 

  57. Antoine, P., L'Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    ADS  Google Scholar 

  58. Salières, P. et al. Feynman's path-integral approach for intense-laser-atom interactions. Science 292, 902–905 (2001).

    ADS  Google Scholar 

  59. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    ADS  Google Scholar 

  60. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  Google Scholar 

  61. McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. & Gühr, M. High harmonic generation from multiple orbitals in N2 . Science 322, 1232–1235 (2008).

    ADS  Google Scholar 

  62. Shafir, D., Mairesse, Y., Villeneuve, D. M., Corkum, P. B. & Dudovich, N. Atomic wavefunctions probed through strong-field light–matter interaction. Nature Phys. 5, 412–416 (2009).

    ADS  Google Scholar 

  63. Mairesse, Y. et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phys. Rev. Lett. 104, 213601 (2010).

    ADS  Google Scholar 

  64. Smirnova, O. et al. Attosecond circular dichroism spectroscopy of polyatomic molecules. Phys. Rev. Lett. 102, 063601 (2009).

    ADS  Google Scholar 

  65. Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nature Phys. 6, 200–206 (2010).

    ADS  Google Scholar 

  66. Shiner, A. D. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Phys. 7, 464–467 (2011).

    ADS  Google Scholar 

  67. Wörner, H. J., Niikura, H., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009).

    ADS  Google Scholar 

  68. Wörner, H. J., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. High-harmonic homodyne detection of the ultrafast dissociation of Br2 molecules. Phys. Rev. Lett. 105, 103002 (2010).

    ADS  Google Scholar 

  69. Wörner, H. J. et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

    ADS  Google Scholar 

  70. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    ADS  Google Scholar 

  71. Kraus, P. M., Rupenyan, A. & Wörner, H. J. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics. Phys. Rev. Lett. 109, 233903 (2012).

    ADS  Google Scholar 

  72. Averbukh, V. High-order harmonic generation by excited helium: the atomic polarization effect. Phys. Rev. A 69, 043406 (2004).

    ADS  Google Scholar 

  73. Zaïr, A. et al. Quantum path interferences in high-order harmonic generation. Phys. Rev. Lett. 100, 143902 (2008).

    ADS  Google Scholar 

  74. Soifer, H. et al. Spatio-spectral analysis of ionization times in high-harmonic generation. Chem. Phys. 414, 176–183 (2013).

    Google Scholar 

  75. Schafer, K. J., Gaarde, M. B., Heinrich, A., Biegert, J. & Keller, U. Strong field quantum path control using attosecond pulse trains. Phys. Rev. Lett. 92, 023003 (2004).

    ADS  Google Scholar 

  76. Biegert, J. et al. Enhancement of high-order harmonic emission using attosecond pulse trains. Laser Phys. 15, 899–902 (2005).

    Google Scholar 

  77. Gademann, G. et al. Attosecond control of electron–ion recollision in high harmonic generation. New J. Phys. 13, 033002 (2011).

    ADS  Google Scholar 

  78. Leeuwenburgh, J., Cooper, B., Averbukh, V., Marangos, J. P. & Ivanov, M. High-order harmonic generation spectroscopy of correlation-driven electron hole dynamics. Phys. Rev. Lett. 111, 123002 (2013).

    ADS  Google Scholar 

  79. Ivanov, M. & Smirnova, O. Opportunities for sub-laser-cycle spectroscopy in condensed phase. Chem. Phys. 414, 3–9 (2013).

    Google Scholar 

  80. Hawkins, P. G. & Ivanov, M. Yu. Role of subcycle transition dynamics in high-order-harmonic generation in periodic structures. Phys. Rev. A 87, 063842 (2013).

    ADS  Google Scholar 

  81. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nature Phys. 7, 138–141 (2011).

    ADS  Google Scholar 

  82. Ghimire, S. et al. Generation and propagation of high-order harmonics in crystals. Phys. Rev. A 85, 043836 (2012).

    ADS  Google Scholar 

  83. Mitrofanov, A. V. et al. Optical detection of attosecond ionization induced by a few-cycle laser field in a transparent dielectric material. Phys. Rev. Lett. 106, 147401 (2011).

    ADS  Google Scholar 

  84. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

    ADS  Google Scholar 

  85. Serbinenko, V. & Smirnova, O. Multidimensional high harmonic spectroscopy: a semi-classical perspective on measuring multielectron rearrangement upon ionization. J. Phys. B 46, 171001 (2013).

    ADS  Google Scholar 

  86. Kim, K. T., Villeneuve, D. M. & Corkum, P. B. Manipulating quantum paths for novel attosecond measurement methods. Nature Photon. 8, 187–194 (2014).

    ADS  Google Scholar 

  87. Boguslavskiy, A. E. et al. The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science 335, 1336–1340 (2012).

    ADS  Google Scholar 

  88. Torres, R. et al. Revealing molecular structure and dynamics through high-order harmonic generation driven by mid-IR fields. Phys. Rev. A 81, 051802 (2010).

    ADS  Google Scholar 

  89. Li, W. et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008).

    ADS  Google Scholar 

  90. Walters, Z. B. & Smirnova, O. Attosecond correlation dynamics during electron tunnelling from molecules. J. Phys. B 43, 161002 (2010).

    ADS  Google Scholar 

  91. Torlina, L., Ivanov, M. & Walters, Z. B. & Smirnova, O. Time-dependent analytical R-matrix approach for strong-field dynamics. II. Many-electron systems. Phys. Rev. A 86, 043409 (2012).

    ADS  Google Scholar 

  92. Cooper, B. & Averbukh, V. Single-photon laser-enabled Auger spectroscopy for measuring attosecond electron-hole dynamics. Phys. Rev. Lett. 111, 083004 (2013).

    ADS  Google Scholar 

  93. Lein, M. Attosecond probing of vibrational dynamics with high-harmonic generation. Phys. Rev. Lett. 94, 053004 (2005).

    ADS  Google Scholar 

  94. Carpeggiani, P. A. et al. Tracing molecular dynamics at the femto-/atto-second boundary through extreme-ultraviolet pump-probe spectroscopy. Preprint at http://arXiv.org/abs/1304.6914 (2013).

  95. Mashiko, H., Suda, A. & Midorikawa, K. Focusing coherent soft-x-ray radiation to a micrometer spot size with an intensity of 1014 W/cm2. Opt. Lett. 29, 1927–1929 (2004).

    ADS  Google Scholar 

  96. Kolliopoulos, G. et al. Revealing quantum path details in high-field physics. Preprint at http://arXiv.org/abs/1307.3859 (2013).

  97. Wu, Y. et al. Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser. Appl. Phys. Lett. 102, 201104 (2013).

    ADS  Google Scholar 

  98. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    ADS  Google Scholar 

  99. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    ADS  Google Scholar 

  100. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    ADS  Google Scholar 

  101. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    ADS  Google Scholar 

  102. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    ADS  Google Scholar 

  103. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Google Scholar 

  104. Kling, M. F. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    ADS  Google Scholar 

  105. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Google Scholar 

  106. Pabst, S., Greenman, L., Ho. P. J., Mazziotti, D. A. & Santra, R. Decoherence in attosecond photoionization. Phys. Rev. Lett. 106, 053003 (2011).

    ADS  Google Scholar 

  107. Kelkensberg, F., Sansone, G., Ivanov, M. Y. & Vrakking, M. A semi-classical model of attosecond electron localization in dissociative ionization of hydrogen. Phys. Chem. Chem. Phys. 13, 8647–8652 (2011).

    Google Scholar 

  108. Siu, W. et al. Attosecond control of dissociative ionization of O2 molecules. Phys. Rev. A 84, 063412 (2011).

    ADS  Google Scholar 

  109. Belshaw, L. et al. Observation of ultrafast charge migration in an amino acid. J. Phys. Chem. Lett. 3, 3751–3754 (2012).

    Google Scholar 

  110. Rosca-Pruna, F. & Vrakking, M. J. J. Experimental observation of revival structures in picosecond laser-induced alignment of I2 . Phys. Rev. Lett. 87, 153902 (2001).

    ADS  Google Scholar 

  111. Stapelfeldt, H. & Seideman, T. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

    ADS  Google Scholar 

  112. Neidel, Ch. et al. Probing time-dependent molecular dipoles on the attosecond time scale. Phys. Rev. Lett. 111, 033001 (2013).

    ADS  Google Scholar 

  113. Tzallas, P., Skantzakis, E., Nikolopoulos, L. A. A., Tsakiris, G. D. & Charalambidis, D. Extreme-ultraviolet pump–probe studies of one-femtosecond-scale electron dynamics. Nature Phys. 7, 781–784 (2011).

    ADS  Google Scholar 

  114. González-Castrillo, A., Palacios, A., Bachau, H. & Martín, F. Clocking ultrafast wave packet dynamics in molecules through UV-induced symmetry breaking. Phys. Rev. Lett. 108, 063009 (2012).

    ADS  Google Scholar 

  115. Kelkensberg, F. et al. Attosecond control in photoionization of hydrogen molecules. Phys. Rev. Lett. 107, 043002 (2011).

    ADS  Google Scholar 

  116. Sansone, G. et al. Attosecond time-resolved electron dynamics in the hydrogen molecule. IEEE J. Sel. Top. Quantum Electron. 18, 520–530 (2012).

    ADS  Google Scholar 

  117. Lucchini, M. et al. Autoionization and ultrafast relaxation dynamics of highly excited states in N2 . Phys. Rev. A 86, 043404 (2012).

    ADS  Google Scholar 

  118. Stolow, A. & Jonas, D. M. Multidimensional snapshots of chemical dynamics. Science 305, 1575–1577 (2004).

    Google Scholar 

  119. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463 (2003).

    ADS  Google Scholar 

  120. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    ADS  Google Scholar 

  121. Fischer, A. et al. Electron localization involving doubly excited states in broadband extreme ultraviolet ionization of H2 . Phys. Rev. Lett. 110, 213002 (2013).

    ADS  Google Scholar 

  122. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    ADS  Google Scholar 

  123. Mendive-Tapia, D., Vacher, M., Bearpark, M. J. & Robb, M. A. Coupled electron-nuclear dynamics: charge migration and charge transfer initiated near a conical intersection. J. Chem. Phys. 139, 044110 (2013).

    ADS  Google Scholar 

  124. Ben-Nun, M., Quenneville, J. & Martinez, T. J. Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104, 5161–5175 (2000).

    Google Scholar 

  125. Xie, X. H. et al. Attosecond-recollision-controlled selective fragmentation of polyatomic molecules. Phys. Rev. Lett. 109, 243001 (2012).

    ADS  Google Scholar 

  126. Wu, G., Hockett, P. & Stolow, A. Time-resolved photoelectron spectroscopy: from wavepackets to observables. Phys. Chem. Chem. Phys. 13, 18447–18467 (2011).

    Google Scholar 

  127. Gagnon, E. et al. Soft X-ray-driven femtosecond molecular dynamics. Science 317, 1374–1378 (2007).

    ADS  Google Scholar 

  128. Sandhu, A. S. et al. Observing the creation of electronic Feshbach resonances in soft X-ray-induced O2 dissociation. Science 322, 1081–1085 (2008).

    ADS  Google Scholar 

  129. Persson, P., Lunell, S., Szöke, A., Ziaja, B. & Hajdu, J. Shake-up and shake-off excitations with associated electron losses in X-ray studies of proteins. Protein Sci. 10, 2480–2484 (2001).

    Google Scholar 

  130. Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V. & Ratner, M. A. Exploring local currents in molecular junctions. Nature Chem. 2, 223–228 (2010).

    ADS  Google Scholar 

  131. Herrmann, D. et al. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt. Lett. 34, 2459–2461 (2009).

    ADS  Google Scholar 

  132. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    ADS  Google Scholar 

  133. Föhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).

    ADS  Google Scholar 

  134. Vrakking, M. J. J. Attosecond imaging. Phys. Chem. Chem. Phys. 16, 2775–2789 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. J. Vrakking.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lépine, F., Ivanov, M. & Vrakking, M. Attosecond molecular dynamics: fact or fiction?. Nature Photon 8, 195–204 (2014). https://doi.org/10.1038/nphoton.2014.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing