Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bandgap tuning of multiferroic oxide solar cells

Subjects

Abstract

Multiferroic films are increasingly being studied for applications in solar energy conversion because of their efficient ferroelectric polarization-driven carrier separation and above-bandgap generated photovoltages, which in principle can lead to energy conversion efficiencies beyond the maximum value (34%) reported in traditional silicon-based bipolar heterojunction solar cells. However, the efficiency reported so far is still too low (<2%) to be considered for commercialization. Here, we demonstrate a new approach to effectively tune the bandgap of double perovskite multiferroic oxides by engineering the cationic ordering for the case of Bi2FeCrO6. Using this approach, we report a power conversion efficiency of 8.1% under AM 1.5 G irradiation (100 mW cm−2) for Bi2FeCrO6 thin-film solar cells in a multilayer configuration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structural ordering and optical absorption.
Figure 2: Effect of cationic ordering on absorption and FE properties.
Figure 3: Single-layer device layout and PV properties.
Figure 4: Optimization of the PV properties of multilayer heterostructure-based devices.
Figure 5: Multilayer properties and device performance.

References

  1. 1

    Chynoweth, A. G. Surface space-charge layers in barium titanate. Phys. Rev. 102, 705 (1956).

    ADS  Article  Google Scholar 

  2. 2

    Chen, F. S. Optically induced change of refractive indices in LiNbO3 and LiTaO3 . J. Appl. Phys. 40, 3389 (1969).

    ADS  Article  Google Scholar 

  3. 3

    Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotech. 5, 143–147 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Nechache, R. et al. Photovoltaic properties of Bi2FeCrO6 epitaxial thin films. Appl. Phys. Lett. 98, 202902 (2011).

    ADS  Article  Google Scholar 

  5. 5

    Yuan, Y. et al. Efficiency enhancement in organic solar cells with ferroelectric polymers. Nature Mater. 10, 296–302 (2011).

    ADS  Article  Google Scholar 

  6. 6

    Alexe, M. & Hesse, D. Tip-enhanced photovoltaic effects in bismuth ferrite. Nature Commun. 2, 256 (2011).

    ADS  Article  Google Scholar 

  7. 7

    Nechache, R., Ruediger, A. & Rosei, F. Combined pn junction and bulk photovoltaic device. US patent 13/162,186 (2011).

  8. 8

    Glass, A. M., von der Linde, D. & Negran, T. J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 . Appl. Phys. Lett. 25, 233–235 (1974).

    ADS  Article  Google Scholar 

  9. 9

    Josch, W., Munser, R., Ruppel, W. & Wurfel, P. The photovoltaic effect and the charge transport in LiNbO3 . Ferroelectrics 21, 623–625 (1978).

    Article  Google Scholar 

  10. 10

    Koch, W. T. H., Munser, R., Ruppel, W. & Wurfel, P. Bulk photovoltaic effect in BaTiO3 . Solid State Commun. 17, 847 (1975).

    ADS  Article  Google Scholar 

  11. 11

    Robertson, J., Warren, W. L. & Tuttle, B. Band states and shallow hole traps in Pb(Zr,Ti)O3 ferroelectrics. J. Appl. Phys. 77, 3975 (1995).

    ADS  Article  Google Scholar 

  12. 12

    Yang, S., Zhang, Y. & Mo, D. A. Comparison of the optical properties of amorphous and polycrystalline PZT thin films deposited by the sol–gel method. Mater. Sci. Eng. B 127, 117–122 (2006).

    Article  Google Scholar 

  13. 13

    Chanussot, G. Physical models for the photoferroelectric phenomena. Ferroelectrics 20, 37–50 (1978).

    Article  Google Scholar 

  14. 14

    Qin, M., Yao, K. & Liang, Y. C. High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl. Phys. Lett. 93, 122904 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Bhatnagar, A., Chaudhuri, A. R., Kim, Y. H., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3 . Nature Commun. 4, 2835 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Zheng, F. et al. Above 1% efficiency of a ferroelectric solar cell based on the Pb(Zr,Ti)O3 film. J. Mater. Chem. A 2, 1363 (2014).

    Article  Google Scholar 

  17. 17

    Zhang, G. et al. New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect. Sci. Rep. 3, 1265 (2013).

    Article  Google Scholar 

  18. 18

    Ji, W., Yao, K. & Liang, Y. C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 22, 1763–1766 (2010).

    Article  Google Scholar 

  19. 19

    Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Choi, W. S. et al. Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nature Commun. 3, 689 (2012).

    ADS  Article  Google Scholar 

  21. 21

    Nechache, R. et al. Epitaxial thin films of the multiferroic double perovskite Bi2FeCrO6 grown on (100)-oriented SrTiO3 substrates: growth, characterization, and optimization. J. Appl. Phys. 105, 061621 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Xu, X. S. et al. Tunable band gap in Bi(Fe1− xMnx)O3 films. Appl. Phys. Lett. 96, 192901 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Kamba, S. et al. Infrared and magnetic characterization of multiferroic Bi2FeCrO6 thin films over a broad temperature range. Phys. Rev. B 77, 104111 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Nechache, R. et al. Epitaxial patterning of Bi2FeCrO6 double perovskite nanostructures: multiferroic at room temperature. Adv. Mater. 23, 1724–1729 (2011).

    Article  Google Scholar 

  25. 25

    Shimada, T., Nakamura, J., Motohashi, T., Yamauchi, H. & Karppinen, M. Kinetics and thermodynamics of the degree of order of the B cations in double-perovskite Sr2FeMoO6 . Chem. Mater. 15, 4494–4497 (2003).

    Article  Google Scholar 

  26. 26

    Nechache, R., Harnagea, C. & Pignolet, A. Multiferroic properties–structure relationships in epitaxial Bi2FeCrO6 thin films: recent developments. J. Phys. Condens. Matter. 24, 096001 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Andreasson, J. et al. Electron-lattice interactions in the perovskite LaFe0.5Cr0.5O3 characterized by optical spectroscopy and LDA+U calculations. Phys. Rev. B 80, 075103 (2009).

    ADS  Article  Google Scholar 

  28. 28

    Tai, C. W. & Baba-Kishi, K. Z. Influence of annealing on B-site order and dielectric properties of (0.4)Pb(In1/2Nb1/2)O3:(0.6)Pb(Mg1/3Nb2/3)O3 relaxor ceramics . J. Appl. Phys. 100, 116103 (2006).

    ADS  Article  Google Scholar 

  29. 29

    Baba-Kishi, K. Z. & Baber, D. J. Transmission electron microscope studies of phase transitions in single crystals and ceramics of ferroelectric Pb(Sc1/2Ta1/2)O3 . J. Appl. Crystallogr. 23, 43–54 (1990).

    Article  Google Scholar 

  30. 30

    Perrin, C. et al. Influence of B-site chemical ordering on the dielectric response of the Pb(Sc1/2Nb1/2)O3 relaxor. J. Phys. Condens. Matter 13, 10231–10245 (2001).

    ADS  Article  Google Scholar 

  31. 31

    Sargent, E. H. Colloidal quantum dot solar cells. Nature Photon. 6, 133–135 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Maksymovych, P. et al. Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421 (2009).

    ADS  Article  Google Scholar 

  33. 33

    Guo, Y., Guo, B., Dong, W., Li, H. & Liu, H. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films. Nanotechnology 24, 275201 (2013).

    Article  Google Scholar 

  34. 34

    Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 8, 128–132 (2014).

    ADS  Article  Google Scholar 

  35. 35

    Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon. 8, 133–138 (2014).

    ADS  Article  Google Scholar 

  36. 36

    Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Canada Foundation for Innovation, which funded the facilities for materials deposition and characterization as well as device fabrication and testing. F.R. is grateful to the Canada Research Chairs Program for partial salary support. F.R. is supported by Discovery (NSERC) and FQRNT team grants. This work was partly funded by an international collaboration grant (MDEIE) with the European Network WIROX. F.R. acknowledges the Alexander von Humboldt Foundation for a F.W. Bessel Award. F.R. is grateful to Elsevier for a grant from Applied Surface Science. R.N. is grateful to NSERC for a personal postdoctoral fellowship for partial salary support. S.L. thanks FRQNT and CSC for salary support. L.C. acknowledges partial salary support through a personal fellowship from FRQS.

Author information

Affiliations

Authors

Contributions

R.N. designed the materials and device optimization strategy. R.N., S.L. and J.C. fabricated and characterized the structural, composition, FE and photovoltaic properties of the films. R.N. and L.C. performed UPS analysis. R.N., W.H. and S.L. carried out the NSTO deposition and electrical and optical measurements for the devices. R.N. and C.H. designed the piezoresponse force microscopy experiments and supervised the analysis of the results and their interpretation. R.N., C.H. and F.R. co-wrote the paper. F.R. supervised the work.

Corresponding authors

Correspondence to R. Nechache or F. Rosei.

Ethics declarations

Competing interests

R.N. and F.R. declare that a US patent related to the PV properties of BFCO films was filed in 2011 under reference 13/162,186.

Supplementary information

Supplementary information

Supplementary information (PDF 3456 kb)

Supplementary movie

Supplementary movie (MOV 204172 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nechache, R., Harnagea, C., Li, S. et al. Bandgap tuning of multiferroic oxide solar cells. Nature Photon 9, 61–67 (2015). https://doi.org/10.1038/nphoton.2014.255

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing