Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media

Abstract

The ability to steer and focus light inside scattering media has long been sought for a multitude of applications. At present, the only feasible strategy to form optical foci inside scattering media is to guide photons by using either implanted1 or virtual2,3,4 guide stars, which can be inconvenient and limits the potential applications. Here we report a scheme for focusing light inside scattering media by employing intrinsic dynamics as guide stars. By adaptively time-reversing the perturbed component of the scattered light, we show that it is possible to focus light to the origin of the perturbation. Using this approach, we demonstrate non-invasive dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media. Anticipated applications include imaging and photoablation of angiogenic vessels in tumours, as well as other biomedical uses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle and schematic of TRAP focusing.
Figure 2: Dynamic light focusing onto a moving target hidden inside a scattering medium.
Figure 3: Focusing light onto flowing targets inside biological tissue.
Figure 4: Imaging a hidden time-variant object.

Similar content being viewed by others

References

  1. Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    Article  ADS  Google Scholar 

  2. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    Article  ADS  Google Scholar 

  3. Si, K., Fiolka, R. & Cui, M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nature Photon. 6, 657–661 (2012).

    Article  ADS  Google Scholar 

  4. Wang, Y. M., Judkewitz, B., DiMarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Commun. 3, 928 (2012).

    Article  ADS  Google Scholar 

  5. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7, 603–614 (2010).

    Article  Google Scholar 

  6. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  7. Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    Article  ADS  Google Scholar 

  8. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010).

    Article  ADS  Google Scholar 

  9. Chaigne, T. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nature Photon. 8, 58–64 (2014).

    Article  ADS  Google Scholar 

  10. Tay, J. W., Lai, P., Suzuki, Y. & Wang, L. V. Ultrasonically encoded wavefront shaping for focusing into random media. Sci. Rep. 4, 3918 (2014).

    Article  ADS  Google Scholar 

  11. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    Article  ADS  Google Scholar 

  12. Hsieh, C-L., Pu, Y., Grange, R., Laporte, G. & Psaltis, D. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt. Express 18, 20723–20731 (2010).

    Article  ADS  Google Scholar 

  13. Vellekoop, I. M., Cui, M. & Changhuei, Y. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 101, 081108 (2012).

    Article  ADS  Google Scholar 

  14. Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nature Photon. 7, 300–305 (2013).

    Article  ADS  Google Scholar 

  15. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  ADS  Google Scholar 

  16. Briers, D. et al. Laser speckle contrast imaging: theoretical and practical limitations. J. Biomed. Opt. 18, 066018 (2013).

    Article  ADS  Google Scholar 

  17. Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    Article  ADS  Google Scholar 

  18. Yang, X., Pu, Y. & Psaltis, D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Opt. Express 22, 3405–3413 (2014).

    Article  ADS  Google Scholar 

  19. Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978).

    Article  ADS  Google Scholar 

  20. Anderson, D. Z., Feinberg, J. & Lininger, D. M. Optical tracking novelty filter. Opt. Lett. 12, 123–125 (1987).

    Article  ADS  Google Scholar 

  21. Cudney, R., Pierce, R. & Feinberg, J. The transient detection microscope. Nature 332, 424–426 (1988).

    Article  ADS  Google Scholar 

  22. Brooks, R. E., Heflinger, L. O. & Wuerker, R. F. Pulsed laser holograms. IEEE J. Quantum Electron. 2, 275–279 (1966).

    Article  ADS  Google Scholar 

  23. Liu, R., Qin, J. & Wang, R. K. Motion-contrast laser speckle imaging of microcirculation within tissue beds in vivo. J. Biomed. Opt. 18, 060508 (2013).

    Article  ADS  Google Scholar 

  24. Miccio, L. et al. Particle tracking by full-field complex wavefront subtraction in digital holography microscopy. Lab Chip 14, 1129–1134 (2014).

    Article  Google Scholar 

  25. Fouda, A. E. & Teixeira, F. L. Imaging and tracking of targets in clutter using differential time reversal techniques. Wave Random Complex 22, 66–108 (2012).

    Article  ADS  Google Scholar 

  26. Brady, D. J. et al. Multiscale gigapixel photography. Nature 486, 386–389 (2012).

    Article  ADS  Google Scholar 

  27. Jin, Y., Jia, C., Huang, S-W., O'Donnell, M. & Gao, X. Multifunctional nanoparticles as coupled contrast agents. Nature Commun. 1, 41 (2010).

    Article  ADS  Google Scholar 

  28. Peterka, D. S., Takahashi, H. & Yuste, R. Imaging voltage in neurons. Neuron 69, 9–21 (2011).

    Article  Google Scholar 

  29. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–796 (2006).

    Article  Google Scholar 

  30. Patterson, G. H. & Lippincott-Schwartz, J. A Photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Zhou for assistance on the flow-control system, L. Wang for discussion on the experimental design, Y. Zhou for assistance on the dye-solution preparation and J. Ballard for editing the manuscript. This work was supported by the National Institutes of Health grants DP1 EB016986 (NIH Director's Pioneer Award) and R01 CA186567 (NIH Director's Transformative Research Award).

Author information

Authors and Affiliations

Authors

Contributions

C.M. and L.V.W. initiated the project. C.M. and X.X. implemented the DOPC-based system. C.M., X.X. and Y.L. designed and ran the experiments. C.M. wrote the codes for the experiments and simulation, and processed the experimental results. L.V.W. provided overall supervision. All authors were involved in writing the manuscript.

Corresponding author

Correspondence to Lihong V. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2063 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 5633 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 501 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Xu, X., Liu, Y. et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nature Photon 8, 931–936 (2014). https://doi.org/10.1038/nphoton.2014.251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing