Abstract
Despite the extraordinary degree of interest in optical metamaterials in recent years, the hoped-for devices and applications have, in large part, yet to emerge. It is becoming clear that the first generation of metamaterial-based devices will most probably arise from their two-dimensional equivalents — metasurfaces. In this Review, we describe recent progress in the area of metasurfaces formed from plasmonic meta-atoms. In particular, we approach the subject from the perspective of the fundamental excitations supported by the meta-atoms and the interactions between them. We also identify some areas ripe for future research and indicate likely avenues for future device development.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).
Cai, W. & Shalaev, V. M. Optical Metamaterials (Springer, 2010).
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of epsilon and mu. Sov. Phys. Uspekhi 10, 509–514 (1968).
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).
Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).
Metzger, B., Schumacher, T., Hentschel, M., Lippitz, M. & Giessen, H. Third harmonic mechanism in complex plasmonic Fano structures. ACS Photon. 1, 471–476 (2014).
Czaplicki, R. et al. Enhancement of second-harmonic generation from metallic nanoparticles by passive elements. Phys. Rev. Lett. 110, 093902 (2013).
Chen, S. et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys. Rev. Lett. 113, 033901 (2014).
Linden, S. et al. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 109, 015502 (2012).
Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nature Commun. 3, 1205 (2012).
Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).
Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).
Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).
Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photon. 7, 791–795 (2013).
Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).
Mie, G. Beitra¨ge zur Optik tru¨ber Medien, speziell kolloidaler Metallo¨sungen. Ann. Phys. 25, 377–445 (1908).
Asano, S. & Yamamoto, G. Light scattering by a spheroidal particle. Appl. Opt. 14, 29–49 (1975).
Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).
Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).
García de Abajo, F. J. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007).
Parsons, J. et al. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys. Rev. B 79, 073412 (2009).
Falcone, F. et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, 197401 (2004).
Zentgraf, T. et al. Babinet's principle for optical metamaterials and nanoantennas. Phys. Rev. B 76, 033407 (2007).
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).
Boltasseva, A. & Shalaev, V. M. Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials 2, 1–17 (2008).
Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003).
Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).
Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).
Lovera, A., Gallinet, B., Nordlander, P. & Martin, O. J. F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527–4536 (2013).
Dahmen, C., Schmidt, B. & von Plessen, G. Radiation damping in metal nanoparticle pairs. Nano Lett. 7, 318–322 (2007).
Olk, P., Renger, J., Wenzel, M. T. & Eng, L. M. Distance dependent spectral tuning of two coupled metal nanoparticles. Nano Lett. 8, 1174–1178 (2008).
Su, K.-H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).
Pinchuk, A. O. & Schatz, G. C. Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mater. Sci. Eng. B 149, 251–258 (2008).
Decker, M., Feth, N., Soukoulis, C. M., Linden, S. & Wegener, M. Retarded long-range interaction in split-ring-resonator square arrays. Phys. Rev. B 84, 085416 (2011).
Lunnemann, P., Sersic, I. & Koenderink, A. F. Optical properties of two-dimensional magnetoelectric point scattering lattices. Phys. Rev. B 88, 245109 (2013).
Hendry, E., Mikhaylovskiy, R. V., Barron, L. D., Kadodwala, M. & Davis, T. J. Chiral electromagnetic fields generated by arrays of nanoslits. Nano Lett. 12, 3640–3644 (2012).
Schäferling, M., Dregely, D., Hentschel, M. & Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012).
Meinzer, N., Hendry, E. & Barnes, W. L. Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Phys. Rev. B 88, 041407 (2013).
Hentschel, M., Schäferling, M., Weiss, T., Liu, N. & Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, 2542–2547 (2012).
Plum, E., Fedotov, V. A., Schwanecke, A. S., Zheludev, N. I. & Chen, Y. Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett. 90, 223113 (2007).
Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).
Decker, M., Zhao, R., Soukoulis, C. M., Linden, S. & Wegener, M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 35, 1593–1595 (2010).
Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotech. 5, 783–787 (2010).
Shamonina, E., Kalinin, V. A., Ringhofer, K. H. & Solymar, L. Magnetoinductive waves in one, two, and three dimensions. J. Appl. Phys. 92, 6252 (2002).
Weick, G., Woollacott, C., Barnes, W. L., Hess, O. & Mariani, E. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles. Phys. Rev. Lett. 110, 106801 (2013).
Kravets, V. G., Schedin, F. & Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101, 087403 (2008).
Chu, Y., Schonbrun, E., Yang, T. & Crozier, K. B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93, 181108 (2008).
Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).
Vecchi, G., Giannini, V. & Gómez Rivas, J. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009).
Lozano, G. et al. Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl. 2, e66 (2013).
Lozano, G., Barten, T., Grzela, G. & Gómez Rivas, J. Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy. New J. Phys. 16, 013040 (2014).
Gallinet, B. & Martin, O. J. F. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. ACS Nano 7, 6978–6987 (2013).
Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007).
Rodriguez, S. R. K. et al. Coupling bright and dark plasmonic lattice resonances. Phys. Rev. X 1, 021019 (2011).
Schokker, A. H. & Koenderink, A. F. Lasing at the band edges of plasmonic lattices. Phys. Rev. B (in the press).
Stehr, J. et al. A low threshold polymer laser based on metallic nanoparticle gratings. Adv. Mater. 15, 1726–1729 (2003).
Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotech. 8, 506–511 (2013).
Van Exter, M. P. et al. Surface plasmon dispersion in metal hole array lasers. Opt. Express 21, 27422–27437 (2013).
Van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013).
Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nature Photon. 3, 546–549 (2009).
Hill, M. T. & Gather, M. C. Advances in small lasers. Nature Photon. 8, 908–918 (2014).
Zhou, W. & Odom, T. W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nature Nanotech. 6, 423–427 (2011).
García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
Schmidt, F.-P. et al. Universal dispersion of surface plasmons in flat nanostructures. Nature Commun. 5, 3604 (2014).
Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).
Han, D., Lai, Y., Zi, J., Zhang, Z.-Q. & Chan, C. T. Dirac spectra and edge states in honeycomb plasmonic lattices. Phys. Rev. Lett. 102, 123904 (2009).
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).
Cheianov, V. & Fal'ko, V. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys. Rev. B 74, 041403 (2006).
Weick, G. & Mariani, E. Tunable plasmon polaritons in arrays of interacting metallic nanoparticles. Preprint at http://arxiv.org/abs/1403.2205 (2014).
Balanis, C. A. Antenna Theory: Analysis and Design 283–384 (Wiley, 2005).
Pors, A., Nielsen, G. M., Eriksen, R. L. & Bozhevolnyi, S. I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013).
Pors, A. & Bozhevolnyi, S. I. Plasmonic metasurfaces for efficient phase control in reflection. Opt. Express 21, 27438–27451 (2013).
Pozar, D. M., Targonski, S. D. & Syrigos, H. D. Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. 45, 287–296 (1997).
Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Mater. 11, 426–431 (2012).
Walther, B. et al. Spatial and spectral light shaping with metamaterials. Adv. Mater. 24, 6300–6304 (2012).
Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225–230 (2014).
Hu, D. et al. Ultrathin terahertz planar elements. Adv. Opt. Mater. 1, 186–191 (2013).
Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nature Commun. 4, 2807 (2013).
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).
Larouche, S. & Smith, D. R. Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37, 2391–2393 (2012).
Magnusson, R. & Gaylord, T. K. Diffraction efficiencies of thin phase gratings with arbitrary grating shape. J. Opt. Soc. Am. 68, 806–809 (1978).
Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750–5755 (2012).
Allen, L. & Beijersbergen, M. W. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Padgett, M., Courtial, J. & Allen, L. Light's orbital angular momentum. Phys. Today 57, 35–40 (2004).
Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328–6333 (2012).
Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).
Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nature Commun. 3, 1198 (2012).
Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nature Commun. 4, 2808 (2013).
Zhang, H., Tan, Q. & Jin, G. Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination. Opt. Eng. 51, 075801 (2012).
Avayu, O., Eisenbach, O., Ditcovski, R. & Ellenbogen, T. Optical metasurfaces for polarization-controlled beam shaping. Opt. Lett. 39, 3892–3895 (2014).
Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).
Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).
Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).
Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).
Zou, L. et al. Dielectric resonator nanoantennas at visible frequencies. Opt. Express 21, 1344–1352 (2013).
Decker, M. et al. High-efficiency light-wave control with all-dielectric optical Huygens' metasurfaces. Preprint at http://arxiv.org/abs/1405.5038 (2014).
Dal Negro, L. & Boriskina, S. V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev. 6, 178–218 (2012).
Wiersma, D. S. Random lasers explained. Nature Photon. 3, 246–248 (2009).
Leonetti, M., Conti, C. & Lopez, C. The mode-locking transition of random lasers. Nature Photon. 5, 615–617 (2011).
Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008).
Armelles, G., Cebollada, A., García-Martín, A. & González, M. U. Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1, 10–35 (2013).
Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014).
Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters. Preprint at http://arXiv.org/abs/1405.1661 (2014).
Zengin, G. et al. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 3, 3074 (2013).
Väkeväinen, A. I. et al. Plasmonic surface lattice resonances at the strong coupling regime. Nano Lett. 14, 1721–1727 (2014).
Zhang, Y., Lu, F., Yager, K. G., van der Lelie, D. & Gang, O. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nature Nanotech. 8, 865–72 (2013).
Decker, M., Klein, M. W., Wegener, M. & Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 32, 856–858 (2007).
Gwinner, M. C. et al. Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography. Small 5, 400–406 (2009).
Nikolaenko, A. E. et al. Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104, 153902 (2010).
Wu, W. et al. Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography. Appl. Phys. A 87, 143–150 (2007).
Yu, N. et al. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
Padilla, W. J., Basov, D. N. & Smith, D. R. Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006).
Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).
Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).
Liu, L. et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26, 5031–5036 (2014).
Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).
Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).
Husnik, M. et al. Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photon. 2, 614–617 (2008).
Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).
Kats, M. A. et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl Acad. Sci. 109, 12364–12368 (2012).
Pancharatnam, S. Generalized theory of interference, and its applications. Part 1. Coherent pencils. Proc. Indian Acad. Sci. A 44, 247–262 (1956).
Berry, M. V. The adiabatic phase and pancharatnam's phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).
Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001).
Acknowledgements
The authors would like to acknowledge the support of the EPSRC through the programme grant EP/I034548/1 (QUEST) and the support of the Leverhulme Trust.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Meinzer, N., Barnes, W. & Hooper, I. Plasmonic meta-atoms and metasurfaces. Nature Photon 8, 889–898 (2014). https://doi.org/10.1038/nphoton.2014.247
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2014.247