Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmonic meta-atoms and metasurfaces

Abstract

Despite the extraordinary degree of interest in optical metamaterials in recent years, the hoped-for devices and applications have, in large part, yet to emerge. It is becoming clear that the first generation of metamaterial-based devices will most probably arise from their two-dimensional equivalents — metasurfaces. In this Review, we describe recent progress in the area of metasurfaces formed from plasmonic meta-atoms. In particular, we approach the subject from the perspective of the fundamental excitations supported by the meta-atoms and the interactions between them. We also identify some areas ripe for future research and indicate likely avenues for future device development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From meta-atoms to metamaterials.
Figure 2: Meta-atoms and metasurface fabrication techniques.
Figure 3: Plasmonic nanoparticle arrays.
Figure 4: Examples of phase-gradient metasurface devices.

Similar content being viewed by others

References

  1. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Google Scholar 

  2. Cai, W. & Shalaev, V. M. Optical Metamaterials (Springer, 2010).

    Book  Google Scholar 

  3. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of epsilon and mu. Sov. Phys. Uspekhi 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  4. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  5. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

    Article  ADS  Google Scholar 

  6. Metzger, B., Schumacher, T., Hentschel, M., Lippitz, M. & Giessen, H. Third harmonic mechanism in complex plasmonic Fano structures. ACS Photon. 1, 471–476 (2014).

    Article  Google Scholar 

  7. Czaplicki, R. et al. Enhancement of second-harmonic generation from metallic nanoparticles by passive elements. Phys. Rev. Lett. 110, 093902 (2013).

    Article  ADS  Google Scholar 

  8. Chen, S. et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys. Rev. Lett. 113, 033901 (2014).

    Article  ADS  Google Scholar 

  9. Linden, S. et al. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 109, 015502 (2012).

    Article  ADS  Google Scholar 

  10. Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nature Commun. 3, 1205 (2012).

    Article  ADS  Google Scholar 

  11. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    Article  ADS  Google Scholar 

  12. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    Article  ADS  Google Scholar 

  13. Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    Article  ADS  Google Scholar 

  14. Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photon. 7, 791–795 (2013).

    Article  ADS  Google Scholar 

  15. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  Google Scholar 

  16. Mie, G. Beitra¨ge zur Optik tru¨ber Medien, speziell kolloidaler Metallo¨sungen. Ann. Phys. 25, 377–445 (1908).

    Article  Google Scholar 

  17. Asano, S. & Yamamoto, G. Light scattering by a spheroidal particle. Appl. Opt. 14, 29–49 (1975).

    Article  ADS  Google Scholar 

  18. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

    Article  ADS  Google Scholar 

  19. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    Article  ADS  Google Scholar 

  20. García de Abajo, F. J. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007).

    Article  ADS  Google Scholar 

  21. Parsons, J. et al. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys. Rev. B 79, 073412 (2009).

    Article  ADS  Google Scholar 

  22. Falcone, F. et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, 197401 (2004).

    Article  ADS  Google Scholar 

  23. Zentgraf, T. et al. Babinet's principle for optical metamaterials and nanoantennas. Phys. Rev. B 76, 033407 (2007).

    Article  ADS  Google Scholar 

  24. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  25. Boltasseva, A. & Shalaev, V. M. Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials 2, 1–17 (2008).

    Article  ADS  Google Scholar 

  26. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003).

    Article  ADS  Google Scholar 

  27. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  ADS  Google Scholar 

  28. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    Article  ADS  Google Scholar 

  29. Lovera, A., Gallinet, B., Nordlander, P. & Martin, O. J. F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527–4536 (2013).

    Article  Google Scholar 

  30. Dahmen, C., Schmidt, B. & von Plessen, G. Radiation damping in metal nanoparticle pairs. Nano Lett. 7, 318–322 (2007).

    Article  ADS  Google Scholar 

  31. Olk, P., Renger, J., Wenzel, M. T. & Eng, L. M. Distance dependent spectral tuning of two coupled metal nanoparticles. Nano Lett. 8, 1174–1178 (2008).

    Article  ADS  Google Scholar 

  32. Su, K.-H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    Article  ADS  Google Scholar 

  33. Pinchuk, A. O. & Schatz, G. C. Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mater. Sci. Eng. B 149, 251–258 (2008).

    Article  Google Scholar 

  34. Decker, M., Feth, N., Soukoulis, C. M., Linden, S. & Wegener, M. Retarded long-range interaction in split-ring-resonator square arrays. Phys. Rev. B 84, 085416 (2011).

    Article  ADS  Google Scholar 

  35. Lunnemann, P., Sersic, I. & Koenderink, A. F. Optical properties of two-dimensional magnetoelectric point scattering lattices. Phys. Rev. B 88, 245109 (2013).

    Article  ADS  Google Scholar 

  36. Hendry, E., Mikhaylovskiy, R. V., Barron, L. D., Kadodwala, M. & Davis, T. J. Chiral electromagnetic fields generated by arrays of nanoslits. Nano Lett. 12, 3640–3644 (2012).

    Article  ADS  Google Scholar 

  37. Schäferling, M., Dregely, D., Hentschel, M. & Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012).

    Google Scholar 

  38. Meinzer, N., Hendry, E. & Barnes, W. L. Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Phys. Rev. B 88, 041407 (2013).

    Article  ADS  Google Scholar 

  39. Hentschel, M., Schäferling, M., Weiss, T., Liu, N. & Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, 2542–2547 (2012).

    Article  ADS  Google Scholar 

  40. Plum, E., Fedotov, V. A., Schwanecke, A. S., Zheludev, N. I. & Chen, Y. Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett. 90, 223113 (2007).

    Article  ADS  Google Scholar 

  41. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  ADS  Google Scholar 

  42. Decker, M., Zhao, R., Soukoulis, C. M., Linden, S. & Wegener, M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 35, 1593–1595 (2010).

    Article  ADS  Google Scholar 

  43. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotech. 5, 783–787 (2010).

    Article  ADS  Google Scholar 

  44. Shamonina, E., Kalinin, V. A., Ringhofer, K. H. & Solymar, L. Magnetoinductive waves in one, two, and three dimensions. J. Appl. Phys. 92, 6252 (2002).

    Article  ADS  Google Scholar 

  45. Weick, G., Woollacott, C., Barnes, W. L., Hess, O. & Mariani, E. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles. Phys. Rev. Lett. 110, 106801 (2013).

    Article  ADS  Google Scholar 

  46. Kravets, V. G., Schedin, F. & Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101, 087403 (2008).

    Article  ADS  Google Scholar 

  47. Chu, Y., Schonbrun, E., Yang, T. & Crozier, K. B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93, 181108 (2008).

    Article  ADS  Google Scholar 

  48. Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Article  ADS  Google Scholar 

  49. Vecchi, G., Giannini, V. & Gómez Rivas, J. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009).

    Article  ADS  Google Scholar 

  50. Lozano, G. et al. Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl. 2, e66 (2013).

    Article  Google Scholar 

  51. Lozano, G., Barten, T., Grzela, G. & Gómez Rivas, J. Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy. New J. Phys. 16, 013040 (2014).

    Article  ADS  Google Scholar 

  52. Gallinet, B. & Martin, O. J. F. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. ACS Nano 7, 6978–6987 (2013).

    Article  Google Scholar 

  53. Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007).

    Article  ADS  Google Scholar 

  54. Rodriguez, S. R. K. et al. Coupling bright and dark plasmonic lattice resonances. Phys. Rev. X 1, 021019 (2011).

    Google Scholar 

  55. Schokker, A. H. & Koenderink, A. F. Lasing at the band edges of plasmonic lattices. Phys. Rev. B (in the press).

  56. Stehr, J. et al. A low threshold polymer laser based on metallic nanoparticle gratings. Adv. Mater. 15, 1726–1729 (2003).

    Article  Google Scholar 

  57. Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotech. 8, 506–511 (2013).

    Article  ADS  Google Scholar 

  58. Van Exter, M. P. et al. Surface plasmon dispersion in metal hole array lasers. Opt. Express 21, 27422–27437 (2013).

    Article  ADS  Google Scholar 

  59. Van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013).

    Article  ADS  Google Scholar 

  60. Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nature Photon. 3, 546–549 (2009).

    Article  ADS  Google Scholar 

  61. Hill, M. T. & Gather, M. C. Advances in small lasers. Nature Photon. 8, 908–918 (2014).

    Article  ADS  Google Scholar 

  62. Zhou, W. & Odom, T. W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nature Nanotech. 6, 423–427 (2011).

    Article  ADS  Google Scholar 

  63. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  ADS  Google Scholar 

  64. Schmidt, F.-P. et al. Universal dispersion of surface plasmons in flat nanostructures. Nature Commun. 5, 3604 (2014).

    Article  ADS  Google Scholar 

  65. Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).

    Article  ADS  Google Scholar 

  66. Han, D., Lai, Y., Zi, J., Zhang, Z.-Q. & Chan, C. T. Dirac spectra and edge states in honeycomb plasmonic lattices. Phys. Rev. Lett. 102, 123904 (2009).

    Article  ADS  Google Scholar 

  67. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  68. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  69. Cheianov, V. & Fal'ko, V. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys. Rev. B 74, 041403 (2006).

    Article  ADS  Google Scholar 

  70. Weick, G. & Mariani, E. Tunable plasmon polaritons in arrays of interacting metallic nanoparticles. Preprint at http://arxiv.org/abs/1403.2205 (2014).

  71. Balanis, C. A. Antenna Theory: Analysis and Design 283–384 (Wiley, 2005).

    Google Scholar 

  72. Pors, A., Nielsen, G. M., Eriksen, R. L. & Bozhevolnyi, S. I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013).

    Article  ADS  Google Scholar 

  73. Pors, A. & Bozhevolnyi, S. I. Plasmonic metasurfaces for efficient phase control in reflection. Opt. Express 21, 27438–27451 (2013).

    Article  ADS  Google Scholar 

  74. Pozar, D. M., Targonski, S. D. & Syrigos, H. D. Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. 45, 287–296 (1997).

    Article  ADS  Google Scholar 

  75. Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Mater. 11, 426–431 (2012).

    Article  ADS  Google Scholar 

  76. Walther, B. et al. Spatial and spectral light shaping with metamaterials. Adv. Mater. 24, 6300–6304 (2012).

    Article  Google Scholar 

  77. Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225–230 (2014).

    Article  ADS  Google Scholar 

  78. Hu, D. et al. Ultrathin terahertz planar elements. Adv. Opt. Mater. 1, 186–191 (2013).

    Article  ADS  Google Scholar 

  79. Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nature Commun. 4, 2807 (2013).

    Article  ADS  Google Scholar 

  80. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  81. Larouche, S. & Smith, D. R. Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37, 2391–2393 (2012).

    Article  ADS  Google Scholar 

  82. Magnusson, R. & Gaylord, T. K. Diffraction efficiencies of thin phase gratings with arbitrary grating shape. J. Opt. Soc. Am. 68, 806–809 (1978).

    Article  ADS  Google Scholar 

  83. Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750–5755 (2012).

    Article  ADS  Google Scholar 

  84. Allen, L. & Beijersbergen, M. W. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  85. Padgett, M., Courtial, J. & Allen, L. Light's orbital angular momentum. Phys. Today 57, 35–40 (2004).

    Article  ADS  Google Scholar 

  86. Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328–6333 (2012).

    Article  ADS  Google Scholar 

  87. Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).

    Article  ADS  Google Scholar 

  88. Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nature Commun. 3, 1198 (2012).

    Article  ADS  Google Scholar 

  89. Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nature Commun. 4, 2808 (2013).

    Article  ADS  Google Scholar 

  90. Zhang, H., Tan, Q. & Jin, G. Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination. Opt. Eng. 51, 075801 (2012).

    Article  ADS  Google Scholar 

  91. Avayu, O., Eisenbach, O., Ditcovski, R. & Ellenbogen, T. Optical metasurfaces for polarization-controlled beam shaping. Opt. Lett. 39, 3892–3895 (2014).

    Article  ADS  Google Scholar 

  92. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  93. Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    Article  ADS  Google Scholar 

  94. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Article  ADS  Google Scholar 

  95. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  Google Scholar 

  96. Zou, L. et al. Dielectric resonator nanoantennas at visible frequencies. Opt. Express 21, 1344–1352 (2013).

    Article  ADS  Google Scholar 

  97. Decker, M. et al. High-efficiency light-wave control with all-dielectric optical Huygens' metasurfaces. Preprint at http://arxiv.org/abs/1405.5038 (2014).

  98. Dal Negro, L. & Boriskina, S. V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev. 6, 178–218 (2012).

    Article  ADS  Google Scholar 

  99. Wiersma, D. S. Random lasers explained. Nature Photon. 3, 246–248 (2009).

    Article  ADS  Google Scholar 

  100. Leonetti, M., Conti, C. & Lopez, C. The mode-locking transition of random lasers. Nature Photon. 5, 615–617 (2011).

    Article  ADS  Google Scholar 

  101. Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008).

    Article  ADS  Google Scholar 

  102. Armelles, G., Cebollada, A., García-Martín, A. & González, M. U. Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1, 10–35 (2013).

    Article  Google Scholar 

  103. Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014).

    Article  ADS  Google Scholar 

  104. Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters. Preprint at http://arXiv.org/abs/1405.1661 (2014).

  105. Zengin, G. et al. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 3, 3074 (2013).

    Article  Google Scholar 

  106. Väkeväinen, A. I. et al. Plasmonic surface lattice resonances at the strong coupling regime. Nano Lett. 14, 1721–1727 (2014).

    Article  ADS  Google Scholar 

  107. Zhang, Y., Lu, F., Yager, K. G., van der Lelie, D. & Gang, O. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nature Nanotech. 8, 865–72 (2013).

    Article  ADS  Google Scholar 

  108. Decker, M., Klein, M. W., Wegener, M. & Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 32, 856–858 (2007).

    Article  ADS  Google Scholar 

  109. Gwinner, M. C. et al. Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography. Small 5, 400–406 (2009).

    Article  Google Scholar 

  110. Nikolaenko, A. E. et al. Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104, 153902 (2010).

    Article  ADS  Google Scholar 

  111. Wu, W. et al. Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography. Appl. Phys. A 87, 143–150 (2007).

    Article  ADS  Google Scholar 

  112. Yu, N. et al. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).

    Article  ADS  Google Scholar 

  113. Padilla, W. J., Basov, D. N. & Smith, D. R. Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006).

    Article  Google Scholar 

  114. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  115. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  Google Scholar 

  116. Liu, L. et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26, 5031–5036 (2014).

    Article  ADS  Google Scholar 

  117. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  ADS  Google Scholar 

  118. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  ADS  Google Scholar 

  119. Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

    Article  ADS  Google Scholar 

  120. Husnik, M. et al. Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photon. 2, 614–617 (2008).

    Article  Google Scholar 

  121. Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  ADS  Google Scholar 

  122. Kats, M. A. et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl Acad. Sci. 109, 12364–12368 (2012).

    Article  ADS  Google Scholar 

  123. Pancharatnam, S. Generalized theory of interference, and its applications. Part 1. Coherent pencils. Proc. Indian Acad. Sci. A 44, 247–262 (1956).

    Article  MathSciNet  Google Scholar 

  124. Berry, M. V. The adiabatic phase and pancharatnam's phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the EPSRC through the programme grant EP/I034548/1 (QUEST) and the support of the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Barnes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meinzer, N., Barnes, W. & Hooper, I. Plasmonic meta-atoms and metasurfaces. Nature Photon 8, 889–898 (2014). https://doi.org/10.1038/nphoton.2014.247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.247

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing