Abstract
Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Ultra-low threshold continuous-wave quantum dot mini-BIC lasers
Light: Science & Applications Open Access 25 April 2023
-
Highly efficient nonlinear optical emission from a subwavelength crystalline silicon cuboid mediated by supercavity mode
Nature Communications Open Access 18 May 2022
-
Continuous-wave upconversion lasing with a sub-10 W cm−2 threshold enabled by atomic disorder in the host matrix
Nature Communications Open Access 21 July 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).
Smit, M. K., van der Tol, J. & Hill, M. T. Moore's law in photonics. Laser Photon. Rev. 6, 1–13 (2012).
Leuthold, J. et al. Plasmonic communications: Light on a wire. Opt. Photon. News 24, 28–35 (2013).
Gather, M. C. & Yun, S. H. Single-cell biological lasers. Nature Photon. 5, 406–410 (2011).
Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).
Blanche, P.-A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010).
Iga, K. Surface-emitting laser — its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quant. Electron. 6, 1201–1215 (2000).
Lee, Y. H. et al. Room-temperature CW vertical cavity single quantum well microlaser diodes. Electron. Lett. 25, 1377–1378 (1989).
Levi, A. F. J. et al. Room temperature operation of microdisc lasers with submilliamp threshold current. Electron. Lett. 28, 1010–1012 (1992).
Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (2010).
Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).
Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).
Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).
Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).
Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).
Zia, R., Selker, M. D., Catrysse, P. B. & Brongersma, M. L. Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21, 2442–2446 (2004).
Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).
Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).
Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).
Chang, S.-W., Lin, T.-R. & Chuang, S. L. Theory of plasmonic Fabry–Perot nanolasers. Opt. Express 18, 15039–15053 (2010).
Ning, C.-Z. Semiconductor nanolasers. Phys. Status Solidi B 247, 774–788 (2010).
Ni, C.-Y. A. & Chuang, S. L. Theory of high-speed nanolasers and nanoLEDs. Opt. Express 20, 16450 (2012).
Li, D. & Stockman, M. I. Electric spaser in the extreme quantum limit. Phys. Rev. Lett. 110, 106803 (2013).
Ma, R.-M., Oulton, R. F., Sorger, V. J. & Zhang, X. Plasmon lasers: Coherent light source at molecular scales. Laser Photon. Rev. 7, 1–21 (2013).
Chuang, S. L. Physics of Photonic Devices 2nd edn (Wiley, 2009).
Hill, M. T. Metal–insulator–metal waveguides with self aligned and electrically contacted thin semiconductor cores exhibiting high optical confinement and low loss. J. Light. Technol. 31, 2540–2549 (2013).
Kirstaedter, N. et al. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Appl. Phys. Lett. 69, 1226–1228 (1996).
Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).
Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. Nature Photon. 7, 963–968 (2013).
Ding, K. et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 21, 4728–4733 (2013).
Lu, C.-Y., Chang, S.-W., Chuang, S. L., Germann, T. D. & Bimberg, D. Metal-cavity surface-emitting microlaser at room temperature. Appl. Phys. Lett. 96, 251101 (2010).
O'Carroll, D., Lieberwirth, I. & Redmond, G. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nature Nanotech. 2, 180–184 (2007).
Nishijima, Y. et al. Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals. Opt. Express 17, 2976–2983 (2009).
Mizuno, H. et al. Single crystals of 5,5′-bis(4′-methoxybiphenyl-4-yl)-2,2′-bithiophene for organic laser media. Adv. Mater. 24, 5744–5749 (2012).
Riechel, S. et al. Very compact tunable solid-state laser utilizing a thin-film organic semiconductor. Opt. Lett. 26, 593–595 (2001).
Shapira, O. et al. Surface-emitting fiber lasers. Opt. Express 14, 3929–3935 (2006).
Tang, S. K. Y. et al. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9, 2767–2771 (2009).
Song, W., Vasdekis, A. E., Li, Z. & Psaltis, D. Optofluidic evanescent dye laser based on a distributed feedback circular grating. Appl. Phys. Lett. 94, 161110 (2009).
Kuehne, A. J. C. et al. A switchable digital microfluidic droplet dye-laser. Lab Chip 11, 3716–3719 (2011).
Ubukata, T., Isoshima, T. & Hara, M. Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system. Adv. Mater. 17, 1630–1633 (2005).
Kuwata-Gonokami, M., Takeda, K., Yasuda, H. & Ema, K. Laser emission from dye-doped polystyrene microsphere. Jpn J. Appl. Phys. 31, L99–L101 (1992).
Yap, B. K., Xia, R., Campoy-Quiles, M., Stavrinou, P. N. & Bradley, D. D. C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Mater. 7, 376–380 (2008).
Wang, H. et al. Cyano-substituted oligo(p-phenylene vinylene) single crystals: A promising laser material. Adv. Func. Mater. 21, 3770–3777 (2011).
Tsiminis, G. et al. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode. Adv. Mater. 25, 2826–2830 (2013).
Anikeeva, P. O., Halpert, J. E., Bawendi, M. G. & Bulovic, V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532–2536 (2009).
Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotech. 7, 335–339 (2012).
Lebby, M. S. et al. Use of VCSEL arrays for parallel optical interconnects. Proc. SPIE Fabr. Testing, Reliab. Semicond. Las. 2683, 81–91 (1996).
Yang, G. M., MacDougal, M. H. & Dapkus, P. D. Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron. Lett. 31, 886–888 (1995).
Langner, M., Sudzius, M., Fro¨b, H., Lyssenko, V. G. & Leo, K. Selective excitation of laser modes in an organic photonic dot microcavity. Appl. Phys. Lett. 95, 091109 (2009).
Gather, M. C. & Yun, S. H. Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein. Opt. Lett. 36, 3299–3301 (2011).
Polman, A., Min, B., Kalkman, J., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold erbium-implanted toroidal microlaser on silicon. Appl. Phys. Lett. 84, 1037–1039 (2004).
Fujita, M., Ushigome, R. & Baba, T. Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA. Electron. Lett. 36, 790–791 (2000).
Zhang, Z. et al. Visible submicron microdisk lasers. Appl. Phys. Lett. 90, 111119 (2007).
Van Campenhout, J. et al. Low-footprint optical interconnect on an SOI chip through heterogeneous integration of InP-based microdisk lasers and microdetectors. IEEE Photon. Technol. Lett. 21, 522–524 (2009).
Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).
Park, H.-G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).
Tandaechanurat, A. et al. Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nature Photon. 5, 91–94 (2011).
Takeda, K., Sato, T., Shinya, A. & Nozaki, K. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nature Photon. 7, 569–575 (2013).
Karnutsch, C. et al. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90, 131104 (2007).
Kuehne, A. J. C. et al. Sub-micrometer patterning of amorphous- and β-phase in a crosslinkable poly(9,9-dioctylfluorene): Dual-wavelength lasing from a mixed-morphology device. Adv. Func. Mater. 21, 2564–2570 (2011).
Baumann, K. et al. Organic mixed-order photonic crystal lasers with ultrasmall footprint. Appl. Phys. Lett. 91, 171108 (2007).
Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photon. 4, 395–399 (2010).
Yu, K., Lakhani, A. & Wu, M. C. Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express 18, 8790–8799 (2010).
Lu, C.-Y. et al. Low thermal impedance of substrate-free metal cavity surface-emitting microlasers. IEEE Photon. Technol. Lett. 23, 1031–1033 (2011).
Fukui, M., So, V. C. Y. & Normandin, R. Lifetime of surface plasmons in thin silver films. Phys. Status Solidi B 91, K61–K64 (1979).
Gather, M. C., Meerholz, K., Danz, N. & Leosson, K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photon. 4, 457–461 (2010).
De Leon, I. & Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photon. 4, 382–387 (2010).
Lakhani, A. M., Kim, M., Lau, E. K. & Wu, M. C. Plasmonic crystal defect nanolaser. Opt. Express 19, 18237–18245 (2011).
Perahia, R., Alegre, T. P. M., Safavi-Naeini, A. H. & Painter, O. Surface-plasmon mode hybridization in subwavelength microdisk lasers. Appl. Phys. Lett. 95, 201114 (2009).
Kwon, S.-H. et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679–83 (2010).
Lu, Y.-J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).
Leosson, K. et al. Ultra-thin gold films on transparent polymers. Nanophotonics 2, 3–11 (2013).
Ma, R.-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2011).
Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).
Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
Meng, X., Kildishev, A. V., Fujita, K., Tanaka, K. & Shalaev, V. M. Wavelength-tunable spasing in the visible. Nano Lett. 13, 4106–4112 (2013).
Peng, B. et al. Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation. ACS Nano 6, 6250–6259 (2012).
Li, X. F. & Yu, S. F. Design of low-threshold compact Au-nanoparticle lasers. Opt. Lett. 35, 2535–2537 (2010).
Khurgin, J. B. & Sun, G. Injection pumped single mode surface plasmon generators: Threshold, linewidth, and coherence. Opt. Express 20, 15309–15325 (2012).
Suh, J. Y. et al. Plasmonic bowtie nanolaser arrays. Nano Lett. 12, 5769–5774 (2012).
Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotech. 8, 506–511 (2013).
Meng, X., Fujita, K., Murai, S., Matoba, T. & Tanaka, K. Plasmonically controlled lasing resonance with metallic–dielectric core–shell nanoparticles. Nano Lett. 11, 1374–1378 (2011).
Kim, M.-K., Lakhani, A. M. & Wu, M. C. Efficient waveguide-coupling of metal-clad nanolaser cavities. Opt. Express 19, 23504–23512 (2011).
Ma, R.-M., Yin, X., Oulton, R. F., Sorger, V. J. & Zhang, X. Multiplexed and electrically modulated plasmon laser circuit. Nano Lett. 12, 5396–5402 (2012).
He, L., Özdemir, S. K., Zhu, J., Kim, W. & Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature Nanotech. 6, 428–432 (2011).
Francois, A. & Himmelhaus, M. Whispering gallery mode biosensor operated in the stimulated emission regime. Appl. Phys. Lett. 94, 031101 (2009).
Nizamoglu, S., Gather, M. C. & Yun, S. H. All-biomaterial laser using vitamin and biopolymers. Adv. Mater. 25, 5943–5947 (2013).
Sun, Y., Shopova, S. I., Wu, C., Arnold, S. & Fan, X. Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc. Natl Acad. Sci. USA 107, 16039–16042 (2010).
Long, C. M., Giannopoulos, A. V. & Choquette, K. D. Modified spontaneous emission from laterally injected photonic crystal emitter. Electron. Lett. 45, 227–228 (2009).
Shambat, G. et al. Electrically driven photonic crystal nanocavity devices. IEEE J. Sel. Top. Quant. Electron. 18, 1700–1710 (2012).
Symonds, C. et al. Confined Tamm plasmon lasers. Nano Lett. 13, 3179–3184 (2013).
Van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013).
Kwon, S. H., Park, H. G. & Lee, Y. H. Photonic crystal lasers. Semicond. Semimetals 86, 301–333 (2012).
Baba, T., Fujita, M. & Sakai, A. Lasing characteristics of GaInAsP–InP strained qunatum-well microdisk injection lasers with diameter of 2–10 μm. IEEE Photon. Technol. Lett. 9, 878–880 (1997).
Seo, M.-K. et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl. Phys. Lett. 90, 171122 (2007).
Dimastrodonato, V., Mereni, L. O., Young, R. J. & Pelucchi, E. Growth and structural characterization of pyramidal site-controlled quantum dots with high uniformity and spectral purity. Phys. Stat. Solidi B 247, 1862–1866 (2010).
Wang, Z. B. et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photon. 5, 753–757 (2011).
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).
Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).
Bhattacharya, P., Xiao, B., Das, A., Bhowmick, S. & Heo, J. Solid state electrically injected exciton–polariton laser. Phys. Rev. Lett. 110, 206403 (2013).
Tempel, J.-S. et al. Characterization of two-threshold behavior of the emission from a GaAs microcavity. Phys. Rev. B 85, 075318 (2012).
Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).
Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).
Acknowledgements
M.T.H was supported by an Australian Research Council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Figures
Supplementary Figures 1–3 (PDF 952 kb)
Rights and permissions
About this article
Cite this article
Hill, M., Gather, M. Advances in small lasers. Nature Photon 8, 908–918 (2014). https://doi.org/10.1038/nphoton.2014.239
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2014.239
This article is cited by
-
Ultra-low threshold continuous-wave quantum dot mini-BIC lasers
Light: Science & Applications (2023)
-
Synthesis and optical properties of II–VI semiconductor quantum dots: a review
Journal of Materials Science: Materials in Electronics (2023)
-
Printable microlaser arrays with programmable modes for information encryption
Nano Research (2023)
-
Plasmonic nano-laser at 675 nm for biomedical applications
Journal of Optics (2023)
-
Highly efficient nonlinear optical emission from a subwavelength crystalline silicon cuboid mediated by supercavity mode
Nature Communications (2022)