Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances in small lasers

Abstract

Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Development timeline of small lasers, from first demonstration to electrical, continuous wave and room-temperature operation, and in some cases to commercial applications.
Figure 2: Using a simple Fabry–Pérot resonator laser to illustrate the fundamental challenges involved in laser miniaturization.
Figure 3: Overview of optical gain materials considered for use in small lasers, along with the key properties of various small lasers.
Figure 4: Metal-based lasers.
Figure 5: Potential future applications of small lasers.

References

  1. 1

    Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  2. 2

    Smit, M. K., van der Tol, J. & Hill, M. T. Moore's law in photonics. Laser Photon. Rev. 6, 1–13 (2012).

    ADS  Google Scholar 

  3. 3

    Leuthold, J. et al. Plasmonic communications: Light on a wire. Opt. Photon. News 24, 28–35 (2013).

    ADS  Google Scholar 

  4. 4

    Gather, M. C. & Yun, S. H. Single-cell biological lasers. Nature Photon. 5, 406–410 (2011).

    ADS  Google Scholar 

  5. 5

    Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    ADS  Google Scholar 

  6. 6

    Blanche, P.-A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Iga, K. Surface-emitting laser — its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quant. Electron. 6, 1201–1215 (2000).

    ADS  Google Scholar 

  8. 8

    Lee, Y. H. et al. Room-temperature CW vertical cavity single quantum well microlaser diodes. Electron. Lett. 25, 1377–1378 (1989).

    ADS  Google Scholar 

  9. 9

    Levi, A. F. J. et al. Room temperature operation of microdisc lasers with submilliamp threshold current. Electron. Lett. 28, 1010–1012 (1992).

    ADS  Google Scholar 

  10. 10

    Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (2010).

    Google Scholar 

  11. 11

    Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    ADS  Google Scholar 

  12. 12

    Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Google Scholar 

  13. 13

    Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    ADS  Google Scholar 

  14. 14

    Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Google Scholar 

  15. 15

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    ADS  Google Scholar 

  16. 16

    Zia, R., Selker, M. D., Catrysse, P. B. & Brongersma, M. L. Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21, 2442–2446 (2004).

    ADS  Google Scholar 

  17. 17

    Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    ADS  Google Scholar 

  18. 18

    Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    ADS  Google Scholar 

  19. 19

    Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    ADS  Google Scholar 

  20. 20

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    ADS  Google Scholar 

  21. 21

    Chang, S.-W., Lin, T.-R. & Chuang, S. L. Theory of plasmonic Fabry–Perot nanolasers. Opt. Express 18, 15039–15053 (2010).

    ADS  Google Scholar 

  22. 22

    Ning, C.-Z. Semiconductor nanolasers. Phys. Status Solidi B 247, 774–788 (2010).

    Google Scholar 

  23. 23

    Ni, C.-Y. A. & Chuang, S. L. Theory of high-speed nanolasers and nanoLEDs. Opt. Express 20, 16450 (2012).

    ADS  Google Scholar 

  24. 24

    Li, D. & Stockman, M. I. Electric spaser in the extreme quantum limit. Phys. Rev. Lett. 110, 106803 (2013).

    ADS  Google Scholar 

  25. 25

    Ma, R.-M., Oulton, R. F., Sorger, V. J. & Zhang, X. Plasmon lasers: Coherent light source at molecular scales. Laser Photon. Rev. 7, 1–21 (2013).

    ADS  Google Scholar 

  26. 26

    Chuang, S. L. Physics of Photonic Devices 2nd edn (Wiley, 2009).

    Google Scholar 

  27. 27

    Hill, M. T. Metal–insulator–metal waveguides with self aligned and electrically contacted thin semiconductor cores exhibiting high optical confinement and low loss. J. Light. Technol. 31, 2540–2549 (2013).

    ADS  Google Scholar 

  28. 28

    Kirstaedter, N. et al. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Appl. Phys. Lett. 69, 1226–1228 (1996).

    ADS  Google Scholar 

  29. 29

    Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    ADS  Google Scholar 

  30. 30

    Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. Nature Photon. 7, 963–968 (2013).

    ADS  Google Scholar 

  31. 31

    Ding, K. et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 21, 4728–4733 (2013).

    ADS  Google Scholar 

  32. 32

    Lu, C.-Y., Chang, S.-W., Chuang, S. L., Germann, T. D. & Bimberg, D. Metal-cavity surface-emitting microlaser at room temperature. Appl. Phys. Lett. 96, 251101 (2010).

    ADS  Google Scholar 

  33. 33

    O'Carroll, D., Lieberwirth, I. & Redmond, G. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nature Nanotech. 2, 180–184 (2007).

    ADS  Google Scholar 

  34. 34

    Nishijima, Y. et al. Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals. Opt. Express 17, 2976–2983 (2009).

    ADS  Google Scholar 

  35. 35

    Mizuno, H. et al. Single crystals of 5,5′-bis(4′-methoxybiphenyl-4-yl)-2,2′-bithiophene for organic laser media. Adv. Mater. 24, 5744–5749 (2012).

    Google Scholar 

  36. 36

    Riechel, S. et al. Very compact tunable solid-state laser utilizing a thin-film organic semiconductor. Opt. Lett. 26, 593–595 (2001).

    ADS  Google Scholar 

  37. 37

    Shapira, O. et al. Surface-emitting fiber lasers. Opt. Express 14, 3929–3935 (2006).

    ADS  Google Scholar 

  38. 38

    Tang, S. K. Y. et al. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9, 2767–2771 (2009).

    Google Scholar 

  39. 39

    Song, W., Vasdekis, A. E., Li, Z. & Psaltis, D. Optofluidic evanescent dye laser based on a distributed feedback circular grating. Appl. Phys. Lett. 94, 161110 (2009).

    ADS  Google Scholar 

  40. 40

    Kuehne, A. J. C. et al. A switchable digital microfluidic droplet dye-laser. Lab Chip 11, 3716–3719 (2011).

    Google Scholar 

  41. 41

    Ubukata, T., Isoshima, T. & Hara, M. Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system. Adv. Mater. 17, 1630–1633 (2005).

    Google Scholar 

  42. 42

    Kuwata-Gonokami, M., Takeda, K., Yasuda, H. & Ema, K. Laser emission from dye-doped polystyrene microsphere. Jpn J. Appl. Phys. 31, L99–L101 (1992).

    ADS  Google Scholar 

  43. 43

    Yap, B. K., Xia, R., Campoy-Quiles, M., Stavrinou, P. N. & Bradley, D. D. C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Mater. 7, 376–380 (2008).

    ADS  Google Scholar 

  44. 44

    Wang, H. et al. Cyano-substituted oligo(p-phenylene vinylene) single crystals: A promising laser material. Adv. Func. Mater. 21, 3770–3777 (2011).

    Google Scholar 

  45. 45

    Tsiminis, G. et al. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode. Adv. Mater. 25, 2826–2830 (2013).

    Google Scholar 

  46. 46

    Anikeeva, P. O., Halpert, J. E., Bawendi, M. G. & Bulovic, V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532–2536 (2009).

    ADS  Google Scholar 

  47. 47

    Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotech. 7, 335–339 (2012).

    ADS  Google Scholar 

  48. 48

    Lebby, M. S. et al. Use of VCSEL arrays for parallel optical interconnects. Proc. SPIE Fabr. Testing, Reliab. Semicond. Las. 2683, 81–91 (1996).

    ADS  Google Scholar 

  49. 49

    Yang, G. M., MacDougal, M. H. & Dapkus, P. D. Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron. Lett. 31, 886–888 (1995).

    Google Scholar 

  50. 50

    Langner, M., Sudzius, M., Fro¨b, H., Lyssenko, V. G. & Leo, K. Selective excitation of laser modes in an organic photonic dot microcavity. Appl. Phys. Lett. 95, 091109 (2009).

    ADS  Google Scholar 

  51. 51

    Gather, M. C. & Yun, S. H. Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein. Opt. Lett. 36, 3299–3301 (2011).

    ADS  Google Scholar 

  52. 52

    Polman, A., Min, B., Kalkman, J., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold erbium-implanted toroidal microlaser on silicon. Appl. Phys. Lett. 84, 1037–1039 (2004).

    ADS  Google Scholar 

  53. 53

    Fujita, M., Ushigome, R. & Baba, T. Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA. Electron. Lett. 36, 790–791 (2000).

    Google Scholar 

  54. 54

    Zhang, Z. et al. Visible submicron microdisk lasers. Appl. Phys. Lett. 90, 111119 (2007).

    ADS  Google Scholar 

  55. 55

    Van Campenhout, J. et al. Low-footprint optical interconnect on an SOI chip through heterogeneous integration of InP-based microdisk lasers and microdetectors. IEEE Photon. Technol. Lett. 21, 522–524 (2009).

    ADS  MathSciNet  Google Scholar 

  56. 56

    Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    ADS  Google Scholar 

  57. 57

    Park, H.-G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

    ADS  Google Scholar 

  58. 58

    Tandaechanurat, A. et al. Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nature Photon. 5, 91–94 (2011).

    ADS  Google Scholar 

  59. 59

    Takeda, K., Sato, T., Shinya, A. & Nozaki, K. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nature Photon. 7, 569–575 (2013).

    ADS  Google Scholar 

  60. 60

    Karnutsch, C. et al. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90, 131104 (2007).

    ADS  Google Scholar 

  61. 61

    Kuehne, A. J. C. et al. Sub-micrometer patterning of amorphous- and β-phase in a crosslinkable poly(9,9-dioctylfluorene): Dual-wavelength lasing from a mixed-morphology device. Adv. Func. Mater. 21, 2564–2570 (2011).

    Google Scholar 

  62. 62

    Baumann, K. et al. Organic mixed-order photonic crystal lasers with ultrasmall footprint. Appl. Phys. Lett. 91, 171108 (2007).

    ADS  Google Scholar 

  63. 63

    Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photon. 4, 395–399 (2010).

    ADS  Google Scholar 

  64. 64

    Yu, K., Lakhani, A. & Wu, M. C. Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express 18, 8790–8799 (2010).

    ADS  Google Scholar 

  65. 65

    Lu, C.-Y. et al. Low thermal impedance of substrate-free metal cavity surface-emitting microlasers. IEEE Photon. Technol. Lett. 23, 1031–1033 (2011).

    ADS  Google Scholar 

  66. 66

    Fukui, M., So, V. C. Y. & Normandin, R. Lifetime of surface plasmons in thin silver films. Phys. Status Solidi B 91, K61–K64 (1979).

    ADS  Google Scholar 

  67. 67

    Gather, M. C., Meerholz, K., Danz, N. & Leosson, K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photon. 4, 457–461 (2010).

    ADS  Google Scholar 

  68. 68

    De Leon, I. & Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photon. 4, 382–387 (2010).

    ADS  Google Scholar 

  69. 69

    Lakhani, A. M., Kim, M., Lau, E. K. & Wu, M. C. Plasmonic crystal defect nanolaser. Opt. Express 19, 18237–18245 (2011).

    ADS  Google Scholar 

  70. 70

    Perahia, R., Alegre, T. P. M., Safavi-Naeini, A. H. & Painter, O. Surface-plasmon mode hybridization in subwavelength microdisk lasers. Appl. Phys. Lett. 95, 201114 (2009).

    ADS  Google Scholar 

  71. 71

    Kwon, S.-H. et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679–83 (2010).

    ADS  Google Scholar 

  72. 72

    Lu, Y.-J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).

    ADS  Google Scholar 

  73. 73

    Leosson, K. et al. Ultra-thin gold films on transparent polymers. Nanophotonics 2, 3–11 (2013).

    ADS  Google Scholar 

  74. 74

    Ma, R.-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2011).

    ADS  Google Scholar 

  75. 75

    Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    ADS  Google Scholar 

  76. 76

    Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    ADS  Google Scholar 

  77. 77

    Meng, X., Kildishev, A. V., Fujita, K., Tanaka, K. & Shalaev, V. M. Wavelength-tunable spasing in the visible. Nano Lett. 13, 4106–4112 (2013).

    ADS  Google Scholar 

  78. 78

    Peng, B. et al. Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation. ACS Nano 6, 6250–6259 (2012).

    Google Scholar 

  79. 79

    Li, X. F. & Yu, S. F. Design of low-threshold compact Au-nanoparticle lasers. Opt. Lett. 35, 2535–2537 (2010).

    ADS  Google Scholar 

  80. 80

    Khurgin, J. B. & Sun, G. Injection pumped single mode surface plasmon generators: Threshold, linewidth, and coherence. Opt. Express 20, 15309–15325 (2012).

    ADS  Google Scholar 

  81. 81

    Suh, J. Y. et al. Plasmonic bowtie nanolaser arrays. Nano Lett. 12, 5769–5774 (2012).

    ADS  Google Scholar 

  82. 82

    Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotech. 8, 506–511 (2013).

    ADS  Google Scholar 

  83. 83

    Meng, X., Fujita, K., Murai, S., Matoba, T. & Tanaka, K. Plasmonically controlled lasing resonance with metallic–dielectric core–shell nanoparticles. Nano Lett. 11, 1374–1378 (2011).

    ADS  Google Scholar 

  84. 84

    Kim, M.-K., Lakhani, A. M. & Wu, M. C. Efficient waveguide-coupling of metal-clad nanolaser cavities. Opt. Express 19, 23504–23512 (2011).

    ADS  Google Scholar 

  85. 85

    Ma, R.-M., Yin, X., Oulton, R. F., Sorger, V. J. & Zhang, X. Multiplexed and electrically modulated plasmon laser circuit. Nano Lett. 12, 5396–5402 (2012).

    ADS  Google Scholar 

  86. 86

    He, L., Özdemir, S. K., Zhu, J., Kim, W. & Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature Nanotech. 6, 428–432 (2011).

    ADS  Google Scholar 

  87. 87

    Francois, A. & Himmelhaus, M. Whispering gallery mode biosensor operated in the stimulated emission regime. Appl. Phys. Lett. 94, 031101 (2009).

    ADS  Google Scholar 

  88. 88

    Nizamoglu, S., Gather, M. C. & Yun, S. H. All-biomaterial laser using vitamin and biopolymers. Adv. Mater. 25, 5943–5947 (2013).

    Google Scholar 

  89. 89

    Sun, Y., Shopova, S. I., Wu, C., Arnold, S. & Fan, X. Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc. Natl Acad. Sci. USA 107, 16039–16042 (2010).

    ADS  Google Scholar 

  90. 90

    Long, C. M., Giannopoulos, A. V. & Choquette, K. D. Modified spontaneous emission from laterally injected photonic crystal emitter. Electron. Lett. 45, 227–228 (2009).

    Google Scholar 

  91. 91

    Shambat, G. et al. Electrically driven photonic crystal nanocavity devices. IEEE J. Sel. Top. Quant. Electron. 18, 1700–1710 (2012).

    ADS  Google Scholar 

  92. 92

    Symonds, C. et al. Confined Tamm plasmon lasers. Nano Lett. 13, 3179–3184 (2013).

    ADS  Google Scholar 

  93. 93

    Van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013).

    ADS  Google Scholar 

  94. 94

    Kwon, S. H., Park, H. G. & Lee, Y. H. Photonic crystal lasers. Semicond. Semimetals 86, 301–333 (2012).

    Google Scholar 

  95. 95

    Baba, T., Fujita, M. & Sakai, A. Lasing characteristics of GaInAsP–InP strained qunatum-well microdisk injection lasers with diameter of 2–10 μm. IEEE Photon. Technol. Lett. 9, 878–880 (1997).

    ADS  Google Scholar 

  96. 96

    Seo, M.-K. et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl. Phys. Lett. 90, 171122 (2007).

    ADS  Google Scholar 

  97. 97

    Dimastrodonato, V., Mereni, L. O., Young, R. J. & Pelucchi, E. Growth and structural characterization of pyramidal site-controlled quantum dots with high uniformity and spectral purity. Phys. Stat. Solidi B 247, 1862–1866 (2010).

    ADS  Google Scholar 

  98. 98

    Wang, Z. B. et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photon. 5, 753–757 (2011).

    ADS  Google Scholar 

  99. 99

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  Google Scholar 

  100. 100

    Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    ADS  Google Scholar 

  101. 101

    Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    ADS  Google Scholar 

  102. 102

    Bhattacharya, P., Xiao, B., Das, A., Bhowmick, S. & Heo, J. Solid state electrically injected exciton–polariton laser. Phys. Rev. Lett. 110, 206403 (2013).

    ADS  Google Scholar 

  103. 103

    Tempel, J.-S. et al. Characterization of two-threshold behavior of the emission from a GaAs microcavity. Phys. Rev. B 85, 075318 (2012).

    ADS  Google Scholar 

  104. 104

    Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

    ADS  Google Scholar 

  105. 105

    Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

M.T.H was supported by an Australian Research Council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding authors

Correspondence to Martin T. Hill or Malte C. Gather.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–3 (PDF 952 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hill, M., Gather, M. Advances in small lasers. Nature Photon 8, 908–918 (2014). https://doi.org/10.1038/nphoton.2014.239

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing