Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas


To move nanophotonic devices such as lasers and single-photon sources into the practical realm, a challenging list of requirements must be met, including directional emission1,2,3,4,5, room-temperature and broadband operation6,7,8,9, high radiative quantum efficiency1,4 and a large spontaneous emission rate7. To achieve these features simultaneously, a platform is needed for which the various decay channels of embedded emitters can be fully understood and controlled. Here, we show that all these device requirements can be satisfied by a film-coupled metal nanocube system with emitters embedded in the dielectric gap region. Fluorescence lifetime measurements on ensembles of emitters reveal spontaneous emission rate enhancements exceeding 1,000 while maintaining high quantum efficiency (>0.5) and directional emission (84% collection efficiency). Using angle-resolved fluorescence measurements, we independently determine the orientations of emission dipoles in the nanoscale gap. Incorporating this information with the three-dimensional spatial distribution of dipoles into full-wave simulations predicts time-resolved emission in excellent agreement with experiments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Directional plasmonic nanopatch antenna.
Figure 2: Experimental demonstration of large spontaneous emission rate enhancement.
Figure 3: Gap thickness dependence of spontaneous emission rates.
Figure 4: Fluorescence intensity enhancement with high quantum efficiency.


  1. 1

    Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Kosako, T., Kadoya, Y. & Hofmann, H. Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photon. 4, 312–315 (2010).

    Article  Google Scholar 

  3. 3

    Curto, A. G. et al. Multipolar radiation of quantum emitters with nanowire optical antennas. Nature Commun. 4, 1750 (2013).

    ADS  Article  Google Scholar 

  4. 4

    Hadden, J. P. et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97, 241901 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Le Moal, E. et al. An electrically excited nanoscale light source with active angular control of the emitted light. Nano Lett. 13, 4198–4205 (2013).

    ADS  Article  Google Scholar 

  6. 6

    Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    ADS  Article  Google Scholar 

  7. 7

    Russell, K., Liu, T., Cui, S. & Hu, E. Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photon. 6, 459–462 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Schietinger, S., Barth, M., Aichele, T. & Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal–diamond hybrid structure at room temperature. Nano Lett. 9, 1694–1698 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  Google Scholar 

  12. 12

    Purcell, E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  13. 13

    Gérard, J. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    ADS  Article  Google Scholar 

  14. 14

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    ADS  Article  Google Scholar 

  15. 15

    Bleuse, J. et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Vesseur, E. J. R., de Abajo, F. J. G. & Polman, A. Broadband Purcell enhancement in plasmonic ring cavities. Phys. Rev. B 82, 165419 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Koenderink, A. F. On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208–4210 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Filter, R., Słowik, K., Straubel, J., Lederer, F. & Rockstuhl, C. Nanoantennas for ultrabright single photon sources. Opt. Lett. 39, 1246–1249 (2014).

    ADS  Article  Google Scholar 

  20. 20

    Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Kollmann, H. et al. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett. 14, 4778–4784 (2014).

    ADS  Article  Google Scholar 

  22. 22

    Esteban, R., Teperik, T. V. & Greffet, J. J. Optical patch antennas for single photon emission using surface plasmon resonances. Phys. Rev. Lett. 104, 026802 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Belacel, C. et al. Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett. 13, 1516–1521 (2013).

    ADS  Article  Google Scholar 

  24. 24

    Yi, M. et al. Plasmonic interaction between silver nano-cubes and a silver ground plane studied by surface-enhanced Raman scattering. Plasmonics 6, 515–519 (2011).

    Article  Google Scholar 

  25. 25

    Lassiter, J. B. et al. Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett. 13, 5866–5872 (2013).

    ADS  Article  Google Scholar 

  26. 26

    Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Yuan, C. et al. Modification of fluorescence properties in single colloidal quantum dots by coupling to plasmonic gap modes. J. Phys. Chem. C 117, 12762–12768 (2013).

    Article  Google Scholar 

  28. 28

    Moreau, A. et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Rose, A. et al. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014).

    ADS  Article  Google Scholar 

  30. 30

    Chen, Y., Munechika, K. & Ginger, D. S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007).

    ADS  Article  Google Scholar 

  31. 31

    Cang, H., Liu, Y., Wang, Y., Yin, X. & Zhang, X. Giant suppression of photobleaching for single molecule detection via the Purcell effect. Nano Lett. 13, 5949–5953 (2013).

    ADS  Article  Google Scholar 

  32. 32

    Lee, K. G. et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nature Photon. 5, 166–169 (2011).

    ADS  Article  Google Scholar 

  33. 33

    Bakker, R. M. et al. Nanoantenna array-induced fluorescence enhancement and reduced lifetimes. New J. Phys. 10, 125022 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Zhang, Q., Li, W., Wen, L.-P., Chen, J. & Xia, Y. Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chem. Eur. J. 16, 10234–10239 (2010).

    Article  Google Scholar 

Download references


The authors thank A. Rose, R. Hill and A. Baron for discussions. This work was supported by the Lord Foundation of North Carolina and the Air Force Office of Scientific Research (contract no. FA9550-12-1-0491).

Author information




G.M.A. and M.H.M. conceived and designed the experiments. G.M.A. performed the experiments. C.A., G.M.A. and C.C. performed the simulations. G.M.A., C.A. and M.H.M. analysed the data. T.B.H. synthesized the Ag nanocubes. G.M.A., T.B.H., C.F. and J.H. fabricated and characterized the samples. G.M.A., C.A. and M.H.M. wrote the manuscript with input from all authors. M.H.M. and D.R.S. supervised the project.

Corresponding author

Correspondence to Maiken H. Mikkelsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4222 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akselrod, G., Argyropoulos, C., Hoang, T. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nature Photon 8, 835–840 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing