Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Access to long-term optical memories using photon echoes retrieved from semiconductor spins

Abstract

The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the photon-echo experiment and optical properties of the investigated structure.
Figure 2: Schematic presentation of the main mechanisms responsible for magnetic-field-induced SPE.
Figure 3: Experimental demonstration of magnetic-field-induced long-lived SPE.

Similar content being viewed by others

References

  1. Kurnit, N. A., Abella, I. D. & Hartmann, S. R. Observation of a photon echo. Phys. Rev. Lett. 13, 567–568 (1964).

    Article  ADS  Google Scholar 

  2. Mossberg, T., Flusberg, A., Kachru, R. & Hartmann, S. R. Total scattering cross section for Na on He measured by stimulated photon echoes. Phys. Rev. Lett. 42, 1665–1669 (1979).

    Article  ADS  Google Scholar 

  3. Takeuchi, N. & Szabo, A. Observation of photon echoes using a nitrogen laser pumped dye laser. Phys. Lett. A 50, 361–362 (1974).

    Article  ADS  Google Scholar 

  4. Schultheis, L., Sturge, M. & Hegarty, J. Photon echoes from two-dimensional excitons in GaAs–AlGaAs quantum wells. Appl. Phys. Lett. 47, 995–997 (1985).

    Article  ADS  Google Scholar 

  5. Noll, G., Siegner, U., Schevel, S. G. & Göbel, E. O. Picosecond stimulated photon echo due to intrinsic excitations in semiconductor mixed crystals. Phys. Rev. Lett. 64, 792–795 (1990).

    Article  ADS  Google Scholar 

  6. Webb, M. D., Cundiff, S. T. & Steel, D. G. Observation of time-resolved picosecond stimulated photon echoes and free polarization decay in GaAs/AlGaAs multiple quantum wells. Phys. Rev. Lett. 66, 934–937 (1991).

    Article  ADS  Google Scholar 

  7. Wiersma, D. A. & Duppen, K. Picosecond holographic-grating spectroscopy. Science 237, 1147–1154 (1987).

    Article  ADS  Google Scholar 

  8. Chemla, D. S. & Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001).

    Article  ADS  Google Scholar 

  9. Samartsev, V. V. Coherent optical spectroscopy of promising materials for solid-state optical processors. Laser Phys. 20, 383–446 (2010).

    Article  ADS  Google Scholar 

  10. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nature Photon. 3, 706–714 (2009).

    Article  ADS  Google Scholar 

  11. Hammerer, K., Sørensen A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    Article  ADS  Google Scholar 

  12. Lambert, L. Q., Compaan, A. & Abella, I. D. Modulation and fast decay of photon-echos in ruby. Phys. Lett. A 30, 153–154 (1969).

    Article  ADS  Google Scholar 

  13. Chen, Y. C., Chiang, K. & Hartmann, S. R. Photon echo relaxation in LaF3:Pr3+ Opt. Commun. 29, 181–185 (1979).

    Article  ADS  Google Scholar 

  14. Morsink, J. B. S., Hesselink, W. H. & Wiersma, D. A. Photon echo stimulated from optically induced nuclear spin polarization. Chem. Phys. Lett. 64, 1–4 (1979).

    Article  ADS  Google Scholar 

  15. Alekseev, A. I., Basharov, A. M. & Beloborodov, V. N. Photon-echo quantum beats in a magnetic field. J. Phys. B 16, 4697–4715 (1983).

    Article  ADS  Google Scholar 

  16. Rubtsova, N. N. et al. Non-Faraday rotation of photon-echo polarization in ytterbium vapor. Phys. Rev. A 70, 023403 (2004).

    Article  ADS  Google Scholar 

  17. Langer, L. et al. Magnetic-field control of photon echo from the electron-trion system in a CdTe quantum well: shuffling coherence between optically accessible and inaccessible states. Phys. Rev. Lett. 109, 157403 (2012).

    Article  ADS  Google Scholar 

  18. Scully, M. O. & Zubairy, M. S. in Quantum Optics Ch. 7 (Cambridge Univ. Press, 1997).

    Book  Google Scholar 

  19. Berman, P. R. & Malinovsky, V. S. in Principles of Laser Spectroscopy and Quantum Optics Ch. 9 (Princeton Univ. Press, 2011).

    MATH  Google Scholar 

  20. Afzelius, M. et al. Demonstration of atomic frequency comb memory for light with spin-wave storage. Phys. Rev. Lett. 104, 040503 (2010).

    Article  ADS  Google Scholar 

  21. Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

    Article  ADS  Google Scholar 

  22. Press, D., Ladd, T. D., Zhang B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  23. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  24. Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008).

    Article  ADS  Google Scholar 

  25. Zhukov, E. A. et al. Spin coherence of a two-dimensional electron gas induced by resonant excitation of trions and excitons in CdTe/(Cd,Mg)Te quantum wells. Phys. Rev. B 76, 205310 (2007).

    Article  ADS  Google Scholar 

  26. Zhukov E. A. et al. Optical control of electron spin coherence in CdTe/(Cd,Mg)Te quantum wells. Phys. Rev. B 81, 235320 (2010).

    Article  ADS  Google Scholar 

  27. Debus, J. et al. Spin-flip Raman scattering of the neutral and charged excitons confined in a CdTe/(Cd,Mg)Te quantum well. Phys. Rev. B 87, 205316 (2013).

    Article  ADS  Google Scholar 

  28. Hu, P., Geschwind, S. & Jedju, T. M. Spin-flip Raman echo in n-type CdS. Phys. Rev. Lett. 37, 1357–1360 (1976).

    Article  ADS  Google Scholar 

  29. Carter, S. G., Chen, Z. & Cundiff S. T. Ultrafast below-resonance Raman rotation of electron spins in GaAs quantum wells. Phys. Rev. B 76, 201308 (2007).

    Article  ADS  Google Scholar 

  30. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  31. Lovrić, M., Suter, D., Ferrier, A. & Goldner, P. Faithful solid state optical memory with dynamically decoupled spin wave storage. Phys. Rev. Lett. 111, 020503 (2013).

    Article  ADS  Google Scholar 

  32. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  ADS  Google Scholar 

  33. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  ADS  Google Scholar 

  34. Oulton, R. et al. Subsecond spin relaxation times in quantum dots at zero applied magnetic field due to a strong electron–nuclear interaction. Phys. Rev. Lett. 98, 107401 (2007).

    Article  ADS  Google Scholar 

  35. Langbein W. & Borri P. in Semiconductor Qubits (eds Henneberger, F. & Benson, O.) Ch. 12, 269 (Pan Stanford, 2008).

    Google Scholar 

Download references

Acknowledgements

The authors thank V.S. Zapasskiî for discussions. The Dortmund team acknowledge financial support from the Deutsche Forschungsgemeinschaft, the Bundesministeriuum für Bildung und Forschung (project Q.com-H). The project ‘SPANGL4Q’ acknowledges financial support from the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant no. FP7-284743. S.V.P. thanks the Russian Foundation of Basic Research for partial financial support (contract no. 14-02-31735 mol-a). S.V.P. and I.A.Yu. acknowledge partial financial support from the Russian Ministry of Science and Education (contract no. 11.G34.31.0067), SPbU (grants nos. 11.38.67.2012 and 11.38.213.2014) and the Skolkovo Institute of Science and Technology (in the framework of the SkolTech/MIT Initiative). I.A.A. and M.B. acknowledge partial financial support from the Russian Ministry of Science and Education (contract no. 14.Z50.31.0021). The research in Poland was partially supported by the National Science Center (Poland) under grants nos. DEC-2012/06/A/ST3/00247 and DEC-2014/ST3/266881.

Author information

Authors and Affiliations

Authors

Contributions

L.L., S.V.P., M.S. and I.A.A. performed the experiments and analysed the data. I.A.Y. developed the theoretical model. G.K. and T.W. fabricated the samples. I.A.A., M.B., D.R.Y., S.V.P. and I.A.Y. conceived the idea for the experiment and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to I. A. Akimov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langer, L., Poltavtsev, S., Yugova, I. et al. Access to long-term optical memories using photon echoes retrieved from semiconductor spins. Nature Photon 8, 851–857 (2014). https://doi.org/10.1038/nphoton.2014.219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing