Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum teleportation on a photonic chip

Abstract

Quantum teleportation is a fundamental concept in quantum physics1 that now finds important applications at the heart of quantum technology, including quantum relays2, quantum repeaters3 and linear optics quantum computing4,5. Photonic implementations have largely focused on achieving long-distance teleportation for decoherence-free quantum communication6,7,8. Teleportation also plays a vital role in photonic quantum computing4,5, for which large linear optical networks will probably require an integrated architecture. Here, we report a fully integrated implementation of quantum teleportation in which all key parts of the circuit—entangled state preparation, Bell-state analysis and tomographic state measurement—are performed on a reconfigurable photonic chip. We also show that a novel element-wise characterization method is critical to the mitigation of component errors, a key technique that will become increasingly important as integrated circuits reach the higher complexities necessary for quantum enhanced operation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Quantum teleportation and photonic chip realization.
Figure 2: Reconstructed density matrices of the teleported states.
Figure 3: Measured and simulated fidelity of on-chip quantum teleportation.

References

  1. 1

    Bennett, C. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    Jacobs, B., Pittman, T. & Franson, J. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002).

    ADS  Article  Google Scholar 

  3. 3

    Briegel, H.-J., Dür, W., Cirac, J. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  Article  Google Scholar 

  4. 4

    Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  5. 5

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    ADS  Article  Google Scholar 

  6. 6

    Jin, X.-M. et al. Experimental free-space quantum teleportation. Nature Photon. 4, 376–381 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

    ADS  Article  Google Scholar 

  8. 8

    Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Childs, A., Leung, D. & Nielsen, M. Unified derivations of measurement-based schemes for quantum computation. Phys. Rev. A 71, 032318 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Kok, P., Nemoto, K., Ralph, T. C., Dowling, J. P. & Milburn, G. J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    ADS  Article  Google Scholar 

  11. 11

    Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photon. 6, 45–49 (2011).

    ADS  Article  Google Scholar 

  12. 12

    Smith, B. J., Kundys, D., Thomas-Peter, N., Smith, P. G. R. & Walmsley, I. A. Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009).

    ADS  Article  Google Scholar 

  13. 13

    Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nature Commun. 2, 566 (2011).

    ADS  Article  Google Scholar 

  14. 14

    Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nature Commun. 4, 1356 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photon. 7, 545–549 (2013).

    ADS  Article  Google Scholar 

  17. 17

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  Article  Google Scholar 

  18. 18

    Boschi, D., Branca, S., Martini, F. D. & Hardy, L. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    Nilsson, J. et al. Quantum teleportation using a light-emitting diode. Nature Photon. 7, 311–315 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Martin, A., Alibart, O., Micheli, M. P. De., Ostrowsky, D. B. & Tanzilli, S. A quantum relay chip based on telecommunication integrated optics technology. New J. Phys. 14, 025002 (2012).

    ADS  Article  Google Scholar 

  21. 21

    Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22

    Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nature Commun. 3, 1325 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Humphreys, P. C. et al. Strain-optic active control for quantum integrated photonics. Preprint at http://arXiv.org/abs/1405.2694 (2014).

  24. 24

    Bonneau, D. et al. Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. Phys. Rev. Lett. 108, 053601 (2012).

    ADS  Article  Google Scholar 

  25. 25

    Lee, H., Chen, T., Li, J., Painter, O. & Vahala, K. J. Ultra-low-loss optical delay line on a silicon chip. Nature Commun. 3, 867 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Kundys, D. O., Gates, J. C., Dasgupta, S., Gawith, C. B. E. & Smith, P. G. R. Use of cross-couplers to decrease size of UV written photonic circuits. IEEE Photon. Technol. Lett. 21, 947–949 (2009).

    ADS  Article  Google Scholar 

  27. 27

    Ralph, T. Scaling of multiple postselected quantum gates in optics. Phys. Rev. A 70, 012312 (2004).

    ADS  Article  Google Scholar 

  28. 28

    Spring, J. B. et al. On-chip low loss heralded source of pure single photons. Opt. Express 21, 13522–13532 (2013).

    ADS  Article  Google Scholar 

  29. 29

    Rahimi-Keshari, S. et al. Direct characterization of linear-optical networks. Opt. Express 21, 13450–13458 (2013).

    ADS  Article  Google Scholar 

  30. 30

    Laing, A. & O'Brien, J. L. Super-stable tomography of any linear optical device. Preprint at http://arXiv.org/abs/1208.2868 (2012).

Download references

Acknowledgements

The authors thank S. Tanzilli for comments on the manuscript. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC projects EP/H03031X/1 and EP/C013956/1, programme grant EP/K034480/1 and platform grant EP/J008052/1), the European Commission project Simulations and Interfaces with Quantum Systems (SIQS), the Royal Society and the European Office of Aerospace Research and Development (EOARD) part of the Air Force Office of Scientific Research (AFOSR). X.-M.J. and W.S.K. are supported by European Commission Marie Curie fellowships (PIIF-GA-2011-300820 and PIEF-GA-2012-331859).

Author information

Affiliations

Authors

Contributions

B.J.M., J.B.S., P.C.H., N.T.-P., N.K.L. and I.A.W. all contributed to designing and setting up the experiment. B.J.M. performed the experiment. J.B.S. designed the FPGA electronics and helped with data taking. D.K. and J.C.G. fabricated the waveguide device. X-M.J., W.S.K., M.B., P.C.H., J.B.S. and B.J.M. all contributed to analysis of the data. B.J.M wrote the manuscript with input from all authors. B.J.S., P.G.R.S. and I.A.W. conceived the work and supervised the project.

Corresponding author

Correspondence to Benjamin J. Metcalf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 21576 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Metcalf, B., Spring, J., Humphreys, P. et al. Quantum teleportation on a photonic chip. Nature Photon 8, 770–774 (2014). https://doi.org/10.1038/nphoton.2014.217

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing