Quantum teleportation on a photonic chip


Quantum teleportation is a fundamental concept in quantum physics1 that now finds important applications at the heart of quantum technology, including quantum relays2, quantum repeaters3 and linear optics quantum computing4,5. Photonic implementations have largely focused on achieving long-distance teleportation for decoherence-free quantum communication6,7,8. Teleportation also plays a vital role in photonic quantum computing4,5, for which large linear optical networks will probably require an integrated architecture. Here, we report a fully integrated implementation of quantum teleportation in which all key parts of the circuit—entangled state preparation, Bell-state analysis and tomographic state measurement—are performed on a reconfigurable photonic chip. We also show that a novel element-wise characterization method is critical to the mitigation of component errors, a key technique that will become increasingly important as integrated circuits reach the higher complexities necessary for quantum enhanced operation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Quantum teleportation and photonic chip realization.
Figure 2: Reconstructed density matrices of the teleported states.
Figure 3: Measured and simulated fidelity of on-chip quantum teleportation.


  1. 1

    Bennett, C. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

  2. 2

    Jacobs, B., Pittman, T. & Franson, J. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002).

  3. 3

    Briegel, H.-J., Dür, W., Cirac, J. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  4. 4

    Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  5. 5

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

  6. 6

    Jin, X.-M. et al. Experimental free-space quantum teleportation. Nature Photon. 4, 376–381 (2010).

  7. 7

    Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

  8. 8

    Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

  9. 9

    Childs, A., Leung, D. & Nielsen, M. Unified derivations of measurement-based schemes for quantum computation. Phys. Rev. A 71, 032318 (2005).

  10. 10

    Kok, P., Nemoto, K., Ralph, T. C., Dowling, J. P. & Milburn, G. J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

  11. 11

    Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photon. 6, 45–49 (2011).

  12. 12

    Smith, B. J., Kundys, D., Thomas-Peter, N., Smith, P. G. R. & Walmsley, I. A. Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009).

  13. 13

    Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nature Commun. 2, 566 (2011).

  14. 14

    Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nature Commun. 4, 1356 (2013).

  15. 15

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

  16. 16

    Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photon. 7, 545–549 (2013).

  17. 17

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

  18. 18

    Boschi, D., Branca, S., Martini, F. D. & Hardy, L. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

  19. 19

    Nilsson, J. et al. Quantum teleportation using a light-emitting diode. Nature Photon. 7, 311–315 (2013).

  20. 20

    Martin, A., Alibart, O., Micheli, M. P. De., Ostrowsky, D. B. & Tanzilli, S. A quantum relay chip based on telecommunication integrated optics technology. New J. Phys. 14, 025002 (2012).

  21. 21

    Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

  22. 22

    Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nature Commun. 3, 1325 (2012).

  23. 23

    Humphreys, P. C. et al. Strain-optic active control for quantum integrated photonics. Preprint at http://arXiv.org/abs/1405.2694 (2014).

  24. 24

    Bonneau, D. et al. Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. Phys. Rev. Lett. 108, 053601 (2012).

  25. 25

    Lee, H., Chen, T., Li, J., Painter, O. & Vahala, K. J. Ultra-low-loss optical delay line on a silicon chip. Nature Commun. 3, 867 (2012).

  26. 26

    Kundys, D. O., Gates, J. C., Dasgupta, S., Gawith, C. B. E. & Smith, P. G. R. Use of cross-couplers to decrease size of UV written photonic circuits. IEEE Photon. Technol. Lett. 21, 947–949 (2009).

  27. 27

    Ralph, T. Scaling of multiple postselected quantum gates in optics. Phys. Rev. A 70, 012312 (2004).

  28. 28

    Spring, J. B. et al. On-chip low loss heralded source of pure single photons. Opt. Express 21, 13522–13532 (2013).

  29. 29

    Rahimi-Keshari, S. et al. Direct characterization of linear-optical networks. Opt. Express 21, 13450–13458 (2013).

  30. 30

    Laing, A. & O'Brien, J. L. Super-stable tomography of any linear optical device. Preprint at http://arXiv.org/abs/1208.2868 (2012).

Download references


The authors thank S. Tanzilli for comments on the manuscript. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC projects EP/H03031X/1 and EP/C013956/1, programme grant EP/K034480/1 and platform grant EP/J008052/1), the European Commission project Simulations and Interfaces with Quantum Systems (SIQS), the Royal Society and the European Office of Aerospace Research and Development (EOARD) part of the Air Force Office of Scientific Research (AFOSR). X.-M.J. and W.S.K. are supported by European Commission Marie Curie fellowships (PIIF-GA-2011-300820 and PIEF-GA-2012-331859).

Author information




B.J.M., J.B.S., P.C.H., N.T.-P., N.K.L. and I.A.W. all contributed to designing and setting up the experiment. B.J.M. performed the experiment. J.B.S. designed the FPGA electronics and helped with data taking. D.K. and J.C.G. fabricated the waveguide device. X-M.J., W.S.K., M.B., P.C.H., J.B.S. and B.J.M. all contributed to analysis of the data. B.J.M wrote the manuscript with input from all authors. B.J.S., P.G.R.S. and I.A.W. conceived the work and supervised the project.

Corresponding author

Correspondence to Benjamin J. Metcalf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 21576 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Metcalf, B., Spring, J., Humphreys, P. et al. Quantum teleportation on a photonic chip. Nature Photon 8, 770–774 (2014). https://doi.org/10.1038/nphoton.2014.217

Download citation

Further reading