Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory

Abstract

Quantum teleportation1 is a cornerstone of quantum information science due to its essential role in important tasks such as the long-distance transmission of quantum information using quantum repeaters2,3. This requires the efficient distribution of entanglement between remote nodes of a network4. Here, we demonstrate quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion-doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon5,6. The latter is jointly measured with another flying polarization qubit to be teleported, which heralds the teleportation. The fidelity of the qubit retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. Our results demonstrate the possibility of long-distance quantum networks with solid-state resources.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Experimental results.

Similar content being viewed by others

References

  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  2. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  3. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  4. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Google Scholar 

  5. Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011).

    Article  ADS  Google Scholar 

  6. Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011).

    Article  ADS  Google Scholar 

  7. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  8. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  ADS  Google Scholar 

  9. Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nature Phys. 9, 400–404 (2013).

    Article  ADS  Google Scholar 

  10. Chen, Y.-A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

    Article  ADS  Google Scholar 

  11. Bao, X.-H. et al. Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl Acad. Sci. USA 109, 20347–20351 (2012).

    Article  ADS  Google Scholar 

  12. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    Article  ADS  Google Scholar 

  13. Nölleke, C. et al. Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013).

    Article  ADS  Google Scholar 

  14. Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nature Commun. 4, 3744 (2013 10.1038/ncomms3744).

    Article  Google Scholar 

  15. Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).

    Article  ADS  Google Scholar 

  16. Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).

    Article  ADS  Google Scholar 

  17. Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    Article  ADS  Google Scholar 

  18. Sabooni, M., Li, Q., Kröll, S. & Rippe, L. Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett. 110, 133604 (2013).

    Article  ADS  Google Scholar 

  19. Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005).

    Article  ADS  Google Scholar 

  20. Heinze, G., Hubrich, C. & Halfmann, T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 111, 033601 (2013).

    Article  ADS  Google Scholar 

  21. Usmani, I., Afzelius, M., de Riedmatten, H. & Gisin, N. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nature Commun. 1, 12 (2010).

    Article  ADS  Google Scholar 

  22. Timoney, N., Usmani, I., Jobez, P., Afzelius, M. & Gisin, N. Single-photon-level optical storage in a solid-state spin-wave memory. Phys. Rev. A 88, 022324 (2013).

    Article  ADS  Google Scholar 

  23. Clausen, C., Bussières, F., Afzelius, M. & Gisin, N. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. Phys. Rev. Lett. 108, 190503 (2012).

    Article  ADS  Google Scholar 

  24. Gündoğan, M., Ledingham, P. M., Almasi, A., Cristiani, M. & de Riedmatten, H. Quantum storage of a photonic polarization qubit in a solid. Phys. Rev. Lett. 108, 190504 (2012).

    Article  ADS  Google Scholar 

  25. Zhou, Z.-Q., Lin, W.-B., Yang, M., Li, C.-F. & Guo, G.-C. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108, 190505 (2012).

    Article  ADS  Google Scholar 

  26. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nature Photon. 7, 210–214 (2013).

    Article  ADS  Google Scholar 

  27. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  28. de Riedmatten, H. et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004).

    Article  ADS  Google Scholar 

  29. Probst, S. et al. Anisotropic rare-earth spin ensmble strongly coupled to a superconducting resonator. Phys. Rev. Lett. 110, 157001 (2013).

    Article  ADS  Google Scholar 

  30. Steffen, L. et al. Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319–322 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Thew, P. Sekatski and H. Zbinden for discussions. The authors acknowledge support by the European project QuReP and the Swiss National Centre of Competence in Research ‘Quantum Science and Technology’ (NCCR QSIT). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was conceived by F.B., C.C., M.A. and N.G. The superconducting detectors were fabricated by V.B.V., S.W.N. and F.M. and characterized by V.B.V., B.K. and F.B. The rare-earth-ion doped crystals were grown by A.F. and P.G. and characterized by A.T. and F.B. The lithium niobate waveguide was fabricated by H.H., C.S. and W.S. and characterized by C.C. The measurements and data analysis were done by C.C., A.T. and F.B. The manuscript was written by F.B., A.T. and C.C., with contributions from all authors.

Corresponding author

Correspondence to Félix Bussières.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussières, F., Clausen, C., Tiranov, A. et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nature Photon 8, 775–778 (2014). https://doi.org/10.1038/nphoton.2014.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing