Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High photon flux table-top coherent extreme-ultraviolet source

Abstract

High harmonic generation (HHG) enables extreme-ultraviolet radiation with table-top set-ups1. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications1. Some of these require a high photon flux and megahertz repetition rates, for example, to avoid space charge effects in photoelectron spectroscopy2,3,4. To date, this has only been achieved with enhancement cavities5. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV–40 eV) of strong harmonics, each containing more than 1 × 1012 photons s–1, which constitutes an increase by more than one order of magnitude in that wavelength range6,7,8. The strongest harmonic (H25, 30 eV) has an average power of 143 μW (3 × 1013 photons s–1). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy9, coherent diffractive imaging10 or (multidimensional) surface science2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up of the high harmonic generation experiments.
Figure 2: Optimization and phase matching in high harmonic generation.
Figure 3: High harmonic generation at a repetition rate of 0.6 MHz.

Similar content being viewed by others

References

  1. Popmintchev, T., Chen, M.-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nature Photon. 4, 822–832 (2010).

    Article  ADS  Google Scholar 

  2. Mathias, S. et al. in Dynamics of Solid State Surface Interfaces Vol. 1 Current Developments (eds Bovensiepen, U., Petek, H. & Wolf, M.) 499–535 (Wiley-VCH, 2010).

    Book  Google Scholar 

  3. Südmeyer, T. et al. Femtosecond laser oscillators for high-field science. Nature Photon. 2, 599–604 (2008).

    Article  Google Scholar 

  4. Keller, U. Femtosecond to attosecond optics. IEEE Photon. J. 2, 225–228 (2010).

    Article  ADS  Google Scholar 

  5. Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    Article  ADS  Google Scholar 

  6. Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nature Photon. 7, 608–612 (2013).

    Article  ADS  Google Scholar 

  7. Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

    Article  ADS  Google Scholar 

  8. Brichta, J.-P. et al. Comparison and real-time monitoring of high-order harmonic generation in different sources. Phys. Rev. A 79, 033404 (2009).

    Article  ADS  Google Scholar 

  9. Sansone, G., Calegari, F. & Nisoli, M. Attosecond technology and science. IEEE J. Sel. Top. Quantum Electron. 18, 507–519 (2012).

    Article  ADS  Google Scholar 

  10. Sandberg, R. L. et al. Lensless diffractive imaging using table-top coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett. 99, 098103 (2007).

    Article  ADS  Google Scholar 

  11. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    Article  ADS  Google Scholar 

  12. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31 (1988).

    Article  Google Scholar 

  13. Salières, P., L'Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

    Article  ADS  Google Scholar 

  14. Antoine, P., L'Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    Article  ADS  Google Scholar 

  15. Corkum, P., Burnett, N. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    Article  ADS  Google Scholar 

  16. Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).

    Article  ADS  Google Scholar 

  17. Vernaleken, A. et al. Single-pass high-harmonic generation at 20.8 MHz repetition rate. Opt. Lett. 36, 3428–3430 (2011).

    Article  ADS  Google Scholar 

  18. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  19. Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  20. Kazamias, S. et al. Pressure-induced phase matching in high-order harmonic generation. Phys. Rev. A 83, 063405 (2011).

    Article  ADS  Google Scholar 

  21. Paul, A. et al. Phase-matching techniques for coherent soft X-ray generation. IEEE J. Quantum Electron. 42, 14–26 (2006).

    Article  ADS  Google Scholar 

  22. Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).

    Article  ADS  Google Scholar 

  23. Hädrich, S. et al. Nonlinear compression to sub-30 fs, 0.5 mJ pulses at 135 W of average power. Opt. Lett. 38, 3866–3869 (2013).

    Article  ADS  Google Scholar 

  24. Epp, S. et al. Soft X-ray laser spectroscopy on trapped highly charged ions at FLASH. Phys. Rev. Lett. 98, 183001 (2007).

    Article  ADS  Google Scholar 

  25. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  26. Limpert, J. et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses. IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).

    Article  Google Scholar 

  27. Krebs, M. et al. Towards isolated attosecond pulses at megahertz repetition rates. Nature Photon. 7, 555–559 (2013).

    Article  ADS  Google Scholar 

  28. Klenke, A. et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. Opt. Lett. 38, 2283–2285 (2013).

    Article  ADS  Google Scholar 

  29. Pronin, O. et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19, 10232 (2011).

    Article  ADS  Google Scholar 

  30. Attwood, D. Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  31. Philipp, H. R. in Handbook of Optical Constants of Solids, Vol. I (ed. Palik, E. D.) 749–763 (Academic Press, 1997); http://dx.doi.org/10.1016/B978-012544415-6.50038-8

    Book  Google Scholar 

  32. Demmler, S. et al. Generation of high-photon flux-coherent soft X-ray radiation with few-cycle pulses. Opt. Lett. 38, 5051–5054 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the German Federal Ministry of Education and Research (BMBF) and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC (grant agreement no. 240460). A.K. acknowledges financial support from the Helmholtz-Institute Jena.

Author information

Authors and Affiliations

Authors

Contributions

J.L., S.H., J.R. and M.K. conceived the experiment. The experiments were planned and performed by S.H., J.R., A.K., A.H. and M.K. Data were analysed by S.H. with support from J.R. and M.K. All authors discussed and contributed to interpretation of the results. J.L. and A.T. supervised the project and acquired funding. The idea for and design of the anti-reflection-coated SiO2 substrates originate from O.P. and V.P., who also fabricated the samples used in this experiment. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Steffen Hädrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hädrich, S., Klenke, A., Rothhardt, J. et al. High photon flux table-top coherent extreme-ultraviolet source. Nature Photon 8, 779–783 (2014). https://doi.org/10.1038/nphoton.2014.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing