Quantum nonlinear optics — photon by photon

Abstract

The realization of strong interactions between individual photons is a long-standing goal of both fundamental and technological significance. Scientists have known for over half a century that light fields can interact inside nonlinear optical media, but the nonlinearity of conventional materials is negligible at the light powers associated with individual photons. Nevertheless, remarkable advances in quantum optics have recently culminated in the demonstration of several methods for generating optical nonlinearities at the level of individual photons. Systems exhibiting strong photon–photon interactions enable a number of unique applications, including quantum-by-quantum control of light fields, single-photon switches and transistors, all-optical deterministic quantum logic, and the realization of strongly correlated states of light and matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Quantum nonlinear optics in a cavity.
Figure 2: Quantum networks.
Figure 3: Nonlinear optics using electromagnetically induced transparency (EIT).
Figure 4: Rydberg-blockade-mediated interaction between slowly propagating photons.
Figure 5: Many-body quantum dynamics in a nonlinear medium.
Figure 6: Quantum interfaces between atoms and nanophotonic systems.

References

  1. 1

    Boyd, R. W. Nonlinear Optics (Academic, 2003).

    Google Scholar 

  2. 2

    Agrawal, G. Nonlinear Fiber Optics 5th edn (Academic, 2012).

    Google Scholar 

  3. 3

    Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nature Biotechnol. 21, 1369–1377 (2003).

    Article  Google Scholar 

  4. 4

    Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnol. 21, 1347–1355 (2003).

    Article  Google Scholar 

  5. 5

    Miller, D. A. B. Are optical transistors the logical next step? Nature Photon. 4, 3–5 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Article  Google Scholar 

  7. 7

    Muthukrishnan, A., Scully, M. O. & Zubairy, M. S. Quantum microscopy using photon correlations. J. Opt. B 6, S575 10.1088/1464-4266/6/6/017(2004).

    ADS  Article  Google Scholar 

  8. 8

    Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

    ADS  Article  Google Scholar 

  9. 9

    Franken, P. A. & Ward, J. F. Optical harmonics and nonlinear phenomena. Rev. Mod. Phys. 35, 23–39 (1963).

    ADS  MATH  Article  Google Scholar 

  10. 10

    Byer, R. L. Quasi-phasematched nonlinear interactions and devices. J. Nonlinear Opt. Phys. Mater. 6, 549–592 (1997).

    ADS  Article  Google Scholar 

  11. 11

    Milburn, G. J. Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).

    ADS  Article  Google Scholar 

  12. 12

    Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985).

    ADS  Article  Google Scholar 

  13. 13

    Harris, S. E., Field, J. E. & Imamoğlu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990).

    ADS  Article  Google Scholar 

  14. 14

    Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. 15

    Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).

    Google Scholar 

  16. 16

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).

    ADS  Article  Google Scholar 

  17. 17

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  18. 18

    Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Schmidt, H. & Imamoğlu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    ADS  Article  Google Scholar 

  20. 20

    Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999).

    ADS  Article  Google Scholar 

  21. 21

    Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    ADS  Article  Google Scholar 

  22. 22

    Gorshkov, A. V., Otterbach, J., Fleischhauer, M., Pohl, T. & Lukin, M. D. Photon–photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, 133602 (2011).

    ADS  Article  Google Scholar 

  23. 23

    Darquie, B. et al. Controlled single-photon emission from a single trapped two-level atom. Science 309, 454–456 (2005).

    ADS  Article  Google Scholar 

  24. 24

    Tey, M. K. et al. Strong interaction between light and a single trapped atom without the need for a cavity. Nature Phys. 4, 924–927 (2008).

    ADS  Article  Google Scholar 

  25. 25

    Hetet, G., Slodicka, L., Hennrich, M. & Blatt, R. Single atom as a mirror of an optical cavity. Phys. Rev. Lett. 107, 133002 (2011).

    ADS  Article  Google Scholar 

  26. 26

    Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2008).

    ADS  Article  Google Scholar 

  27. 27

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    ADS  Article  Google Scholar 

  28. 28

    Schuster, I. et al. Nonlinear spectroscopy of photons bound to one atom. Nature Phys. 4, 382–385 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    ADS  Article  Google Scholar 

  30. 30

    Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    ADS  Article  Google Scholar 

  31. 31

    Volz, T. et al. Ultrafast all-optical switching by single photons. Nature Photon. 6, 605–609 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Tanji-Suzuki, H., Chen, W., Landig, R., Simon, J. & Vuletic, V. Vacuum-induced transparency. Science 333, 1266–1269 (2011).

    ADS  Article  Google Scholar 

  33. 33

    Jaynes, E. & Cummings, F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

    Article  Google Scholar 

  34. 34

    Kubanek, A. et al. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008).

    ADS  Article  Google Scholar 

  35. 35

    Koch, M. et al. Three-photon correlations in a strongly driven atom–cavity system. Phys. Rev. Lett. 107, 023601 (2011).

    ADS  Article  Google Scholar 

  36. 36

    Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    ADS  Article  Google Scholar 

  37. 37

    Pelton, M. et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    ADS  Article  Google Scholar 

  38. 38

    Laucht, A. et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys. 11, 023034 (2009).

    ADS  Article  Google Scholar 

  39. 39

    Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

    ADS  Article  Google Scholar 

  40. 40

    Hausmann, B. J. M. et al. Integrated diamond networks for quantum nanophotonics. Nano Lett. 12, 1578–1582 (2012).

    ADS  Article  Google Scholar 

  41. 41

    Bajcsy, M. et al. Non-classical three-photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity. Preprint at http://lanl.arXiv.org/abs/1307.3601v1 (2013).

  42. 42

    Reinhard, A. et al. Strongly correlated photons on a chip. Nature Photon. 6, 93–96 (2012).

    ADS  Article  Google Scholar 

  43. 43

    Witthaut, D., Lukin, M. D. & Sørensen, A. S. Photon sorters and QND detectors using single photon emitters. Europhys. Lett. 97, 50007 (2012).

    ADS  Article  Google Scholar 

  44. 44

    Xu, S., Rephaeli, E. & Fan, S. Analytic properties of two-photon scattering matrix in integrated quantum systems determined by the cluster decomposition principle. Phys. Rev. Lett. 111, 223602 (2013).

    ADS  Article  Google Scholar 

  45. 45

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS  Article  Google Scholar 

  46. 46

    Fleischhauer, M., Imamoğlu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Article  Google Scholar 

  47. 47

    Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

    ADS  Article  Google Scholar 

  48. 48

    Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).

    ADS  Article  Google Scholar 

  49. 49

    Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    ADS  Article  Google Scholar 

  50. 50

    Reiserer, A. et al. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    ADS  Article  Google Scholar 

  51. 51

    Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    ADS  Article  Google Scholar 

  52. 52

    Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    ADS  Article  Google Scholar 

  53. 53

    Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    ADS  Article  Google Scholar 

  54. 54

    Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

    ADS  Article  Google Scholar 

  55. 55

    Venkataraman, V., Saha, K., Londero, P. & Gaeta, A. L. Few-photon all-optical modulation in a photonic band-gap fiber. Phys. Rev. Lett. 107, 193902 (2011).

    ADS  Article  Google Scholar 

  56. 56

    Nikoghosyan, G. & Fleischhauer, M. Photon-number selective group delay in cavity induced transparency. Phys. Rev. Lett. 105, 013601 (2010).

    ADS  Article  Google Scholar 

  57. 57

    Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013).

    ADS  Article  Google Scholar 

  58. 58

    Friedler, I., Petrosyan, D., Fleischhauer, M. & Kurizki, G. Long-range interactions and entanglement of slow single-photon pulses. Phys. Rev. A 72, 043803 (2005).

    ADS  Article  Google Scholar 

  59. 59

    Moller, D., Madsen, L. B. & Molmer, K. Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008).

    ADS  Article  Google Scholar 

  60. 60

    Rajapakse, R. M. et al. Single-photon nonlinearities using arrays of cold polar molecules. Phys. Rev. A 80, 013810 (2009).

    ADS  Article  Google Scholar 

  61. 61

    Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    ADS  Article  Google Scholar 

  62. 62

    Petrosyan, D., Otterbach, J. & Fleischhauer, M. Electromagnetically induced transparency with Rydberg atoms. Phys. Rev. Lett. 107, 213601 (2011).

    ADS  Article  Google Scholar 

  63. 63

    Sevincli, S., Henkel, N., Ates, C. & Pohl, T. Nonlocal nonlinear optics in cold Rydberg gases. Phys. Rev. Lett. 107, 153001 (2011).

    ADS  Article  Google Scholar 

  64. 64

    Muller, M., Lesanovsky, I., Weimer, H., Buchler, H. P. & Zoller, P. Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009).

    ADS  Article  Google Scholar 

  65. 65

    Pritchard, J. D. et al. Cooperative atom–light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010).

    ADS  Article  Google Scholar 

  66. 66

    Pritchard, J., Weatherill, K. & Adams, C. Nonlinear optics using cold Rydberg atoms in Annual Review of Cold Atoms and Molecules (eds Madison, K. W., Wang, Y., Rey, A. M. & Bongs, K.) 1, 301–350 (World Scientific, 2013).

    Google Scholar 

  67. 67

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    ADS  Article  Google Scholar 

  68. 68

    Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

    ADS  Article  Google Scholar 

  69. 69

    Baur, S., Tiarks, D., Rempe, G. & Dürr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014).

    ADS  Article  Google Scholar 

  70. 70

    Li, L., Dudin, Y. O. & Kuzmich, A. Entanglement between light and an optical atomic excitation. Nature 498, 466–469 (2013).

    ADS  Article  Google Scholar 

  71. 71

    Maxwell, D. et al. Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett. 110, 103001 (2013).

    ADS  Article  Google Scholar 

  72. 72

    Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    ADS  Article  Google Scholar 

  73. 73

    Lai, Y. & Haus, H. A. Quantum theory of solitons in optical fibers. II. Exact solution. Phys. Rev. A 40, 854–866 (1989).

    ADS  Article  Google Scholar 

  74. 74

    Drummond, P. D., Shelby, R. M., Friberg, S. R. & Yamamoto, Y. Quantum solitons in optical fibres. Nature 365, 307–313 (1993).

    ADS  Article  Google Scholar 

  75. 75

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS  Article  Google Scholar 

  76. 76

    Grangier, P., Levenson, J. A. & Poizat, J.-P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).

    ADS  Article  Google Scholar 

  77. 77

    O'Shea, D., Junge, C., Volz, J. & Rauschenbeutel, A. Fiber-optical switch controlled by a single atom. Phys. Rev. Lett. 111, 193601 (2013).

    ADS  Article  Google Scholar 

  78. 78

    Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science http://dx.doi.org/10.1126/science.1254699 (2014).

  79. 79

    Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    ADS  Article  Google Scholar 

  80. 80

    Law, C. K. & Eberly, J. H. Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76, 1055–1058 (1996).

    ADS  Article  Google Scholar 

  81. 81

    Plenio, M. B., Huelga, S. F., Beige, A. & Knight, P. L. Cavity-loss-induced generation of entangled atoms. Phys. Rev. A 59, 2468–2475 (1999).

    ADS  Article  Google Scholar 

  82. 82

    Chiao, R. Y., Deutsch, I. H. & Garrison, J. C. Two-photon bound state in self-focusing media. Phys. Rev. Lett. 67, 1399–1402 (1991).

    ADS  Article  Google Scholar 

  83. 83

    Deutsch, I. H., Chiao, R. Y. & Garrison, J. C. Two-photon bound states: The diphoton bullet in dispersive self-focusing media. Phys. Rev. A 47, 3330–3336 (1993).

    ADS  Article  Google Scholar 

  84. 84

    Kheruntsyan, K. V. & Drummond, P. D. Three-dimensional quantum solitons with parametric coupling. Phys. Rev. A 58, 2488–2499 (1998).

    ADS  Article  Google Scholar 

  85. 85

    Hartmann, M. J., Brandao, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006).

    ADS  Article  Google Scholar 

  86. 86

    Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nature Phys. 2, 856–861 (2006).

    ADS  Article  Google Scholar 

  87. 87

    Angelakis, D. G., Santos, M. F. & Bose, S. Photon-blockade-induced Mott transitions and spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).

    ADS  Article  Google Scholar 

  88. 88

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS  Article  Google Scholar 

  89. 89

    Chang, D. E. et al. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nature Phys. 4, 884–889 (2008).

    ADS  Article  Google Scholar 

  90. 90

    Otterbach, J., Moos, M., Muth, D. & Fleischhauer, M. Wigner crystallization of single photons in cold Rydberg ensembles. Phys. Rev. Lett. 111, 113001 (2013).

    ADS  Article  Google Scholar 

  91. 91

    Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).

    ADS  Article  Google Scholar 

  92. 92

    Kiffner, M. & Hartmann, M. J. Dissipation-induced correlations in one-dimensional bosonic systems. New J. Phys. 13, 053027 10.1088/1367-2630/13/5/053027(2011).

    ADS  Article  Google Scholar 

  93. 93

    Shen, J.-T. & Fan, S. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007).

    ADS  Article  Google Scholar 

  94. 94

    Shi, T. & Sun, C. P. Lehmann–Symanzik–Zimmermann reduction approach to multiphoton scattering in coupled-resonator arrays. Phys. Rev. B 79, 205111 (2009).

    ADS  Article  Google Scholar 

  95. 95

    Pletyukhov, M. & Gritsev, V. Scattering of massless particles in one-dimensional chiral channel. New J. Phys. 14, 095028 10.1088/1367-2630/14/9/095028(2012).

    ADS  Article  Google Scholar 

  96. 96

    Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).

    ADS  Article  Google Scholar 

  97. 97

    Goban, A. et al. Atom–light interactions in photonic crystals. Nature Commun. 5, 3808 (2014).

    ADS  Article  Google Scholar 

  98. 98

    Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

    ADS  Article  Google Scholar 

  99. 99

    Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear phase shift for single fiber-guided photons interacting with a single atom. Preprint at http://lanl.arXiv.org/abs/1403.1860v1 (2014).

  100. 100

    Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    ADS  Article  Google Scholar 

  101. 101

    Kolesov, R. et al. Wave–particle duality of single surface plasmon polaritons. Nature Phys. 5, 470–474 (2009).

    ADS  Article  Google Scholar 

  102. 102

    Aspelmeyer, M., Groblacher, S., Hammerer, K. & Kiesel, N. Quantum optomechanics — throwing a glance. J. Opt. Soc. Am. B 27, A189–A197 (2010).

    ADS  Article  Google Scholar 

  103. 103

    Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011).

    ADS  Article  Google Scholar 

  104. 104

    Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

    ADS  Article  Google Scholar 

  105. 105

    Gupta, S., Moore, K. L., Murch, K. W. & Stamper-Kurn, D. M. Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 99, 213601 (2007).

    ADS  Article  Google Scholar 

  106. 106

    Gullans, M., Chang, D. E., Koppens, F. H. L., de Abajo, F. J. G. & Lukin, M. D. Single-photon nonlinear optics with graphene plasmons. Phys. Rev. Lett. 111, 247401 10.1103/PhysRevLett.111.247401(2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge C. Adams, I. Cirac, W. Chen, Y. Chu, E. Demler, M. Fleischhauer, O. Firstenberg, S. Harris, V. Gritsev, A. Gorshkov, A. Imamoğlu, H. J. Kimble, N. de Leon, M. Loncar, H. Tanji-Suzuki, T. Peyronel, T. Pohl, G. Rempe, A. Sørensen, M. O. Scully, T. Tiecke, J. Thompson, J. Vuckovic, S. Yelin, A. Zibrov, and P. Zoller for the many discussions and contributions that resulted in the work described in this Review. Support from the National Science Foundation, Harvard-MIT Center for Ultracold Atoms, Defense Advanced Research Projects Agency, Air Force Office of Scientific Research Multidisciplinary University Research Initiative, Packard Foundation, and European project Graphene-Based Single-Photon Nonlinear Optical Devices (GRASP) is gratefully acknowledged. D.E.C. acknowledges support from Fundacio Privada Cellex Barcelona and the Ramon y Cajal programme.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Mikhail D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, D., Vuletić, V. & Lukin, M. Quantum nonlinear optics — photon by photon. Nature Photon 8, 685–694 (2014). https://doi.org/10.1038/nphoton.2014.192

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing