Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations


Optical imaging through and inside complex samples is a difficult challenge with important applications in many fields. The fundamental problem is that inhomogeneous samples such as biological tissue randomly scatter and diffuse light, preventing the formation of diffraction-limited images. Despite many recent advances, no current method can perform non-invasive imaging in real-time using diffused light. Here, we show that, owing to the ‘memory-effect’ for speckle correlations, a single high-resolution image of the scattered light, captured with a standard camera, encodes sufficient information to image through visually opaque layers and around corners with diffraction-limited resolution. We experimentally demonstrate single-shot imaging through scattering media and around corners using spatially incoherent light and various samples, from white paint to dynamic biological samples. Our single-shot lensless technique is simple, does not require wavefront-shaping nor time-gated or interferometric detection, and is realized here using a camera-phone. It has the potential to enable imaging in currently inaccessible scenarios.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Non-invasive imaging through strongly scattering layers by speckle correlations: concept and numerical example.
Figure 2: Experimental imaging through a visually opaque optical diffuser and two biological samples.
Figure 3: Non-invasive imaging of objects enclosed between two diffusers.
Figure 4: Single-shot imaging ‘around corners’ using back-scattered light.
Figure 5: Imaging through a visually opaque layer with a camera-phone.


  1. 1

    Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007).

    Google Scholar 

  2. 2

    Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7, 603–614 (2010).

    Article  Google Scholar 

  3. 3

    Goodman, J. W., Huntley Jr, W. H., Jackson, D. W. & Lehmann, M. Wavefront-reconstruction imaging through random media. Appl. Phys. Lett. 8, 311–313 (1966).

    ADS  Article  Google Scholar 

  4. 4

    Kogelnik, H. & Pennington, K. S. Holographic imaging through a random medium. J. Opt. Soc. Am. 58, 273–274 (1968).

    Article  Google Scholar 

  5. 5

    Tyson, R. K. Principles of Adaptive Optics 3rd edn (Academic, 2010).

    Book  Google Scholar 

  6. 6

    Débarre, D. et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett. 34, 2495–2497 (2009).

    ADS  Article  Google Scholar 

  7. 7

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  9. 9

    Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  10. 10

    Cizmar, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    ADS  Article  Google Scholar 

  11. 11

    Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    ADS  Article  Google Scholar 

  12. 12

    Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    ADS  Article  Google Scholar 

  13. 13

    Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010 10.1038/ncomms1078).

    ADS  Article  Google Scholar 

  14. 14

    Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012).

    ADS  Article  Google Scholar 

  15. 15

    Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  17. 17

    Hsieh, C.-L., Pu, Y., Grange, R., Laporte, G. & Psaltis, D. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt. Express 18, 20723–20731 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photon. 6, 549–553 (2012).

    ADS  Article  Google Scholar 

  19. 19

    He, H., Guan, Y. & Zhou, J. Image restoration through thin turbid layers by correlation with a known object. Opt. Express 21, 12539–12545 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    ADS  Article  Google Scholar 

  21. 21

    Si, K., Fiolka, R. & Cui, M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nature Photon. 6, 657–661 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Wang, Y. M., Judkewitz, B., DiMarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Commun. 3, 928 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Kong, F. et al. Photoacoustic-guided convergence of light through optically diffusive media. Opt. Lett. 36, 2053–2055 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nature Photon. 7, 300–305 (2013).

    ADS  Article  Google Scholar 

  25. 25

    Chaigne, T. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nature Photon. 8, 58–64 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Tang, J., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl Acad. Sci. USA 109, 8434–8439 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Yang, X., Pu, Y. & Psaltis, D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Opt. Express 22, 3405–3413 (2014).

    ADS  Article  Google Scholar 

  29. 29

    Labeyrie, A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images. Astron. Astrophys. 6, 85–87 (1970).

    ADS  Google Scholar 

  30. 30

    Dainty, J. C. Laser Speckle and Related Phenomena (Springer, 1984).

    Google Scholar 

  31. 31

    Ayers, G., Northcott, M. & Dainty, J. Knox–Thompson and triple-correlation imaging through atmospheric turbulence. J. Opt. Soc. Am. A 5, 963–985 (1988).

    ADS  Article  Google Scholar 

  32. 32

    Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

    ADS  Article  Google Scholar 

  33. 33

    Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

    ADS  Article  Google Scholar 

  34. 34

    Freund, I. Looking through walls and around corners. Phys. A 168, 49–65 (1990).

    Article  Google Scholar 

  35. 35

    Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    ADS  Article  Google Scholar 

  36. 36

    Fienup, C. D. J. in Image Recovery: Theory and Application (ed. Stark, H.) 231–275 (Academic, 1987).

    Google Scholar 

  37. 37

    Dowski, J. E. R. & Cathey, W. T. Extended depth of field through wave-front coding. Appl. Opt. 34, 1859–1866 (1995).

    ADS  Article  Google Scholar 

  38. 38

    Cathey, W. T. & Dowski, E. R. New paradigm for imaging systems. Appl. Opt. 41, 6080–6092 (2002).

    ADS  Article  Google Scholar 

  39. 39

    Curry, N. et al. Direct determination of diffusion properties of random media from speckle contrast. Opt. Lett. 36, 3332–3334 (2011).

    ADS  Article  Google Scholar 

  40. 40

    Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature Commun. 3, 745 (2012).

    ADS  Article  Google Scholar 

  41. 41

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Article  Google Scholar 

  42. 42

    Van Beijnum, F., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Frequency bandwidth of light focused through turbid media. Opt. Lett. 36, 373–375 (2011).

    ADS  Article  Google Scholar 

  43. 43

    Small, E., Katz, O. & Silberberg, Y. Spatiotemporal focusing through a thin scattering layer. Opt. Express 20, 5189–5195 (2012).

    ADS  Article  Google Scholar 

  44. 44

    Cheong, W.-F., Prahl, S. A. & Welch, A. J. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990).

    ADS  Article  Google Scholar 

  45. 45

    Vellekoop, I. M., Cui, M. & Yang, C. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 101, 081108 (2012).

    ADS  Article  Google Scholar 

  46. 46

    Elson, D. S., Li, R., Dunsby, C., Eckersley, R. & Tang, M.-X. Ultrasound-mediated optical tomography: a review of current methods. Interface Focus 1, 632–648 (2011).

    Article  Google Scholar 

  47. 47

    Skipetrov, S. E. et al. Noise in laser speckle correlation and imaging techniques. Opt. Express 18, 14519–14534 (2010).

    ADS  Article  Google Scholar 

  48. 48

    Moravec, M. L., Romberg, J. K. & Baraniuk, R. G. Wavelets XII. Proc. SPIE 6701, 670120 (2007).

    Article  Google Scholar 

  49. 49

    Shechtman, Y., Beck, A. & Eldar, Y. GESPAR: Efficient phase retrieval of sparse signals. IEEE Trans. Signal Process. 62, 928–938 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  50. 50

    Fink, M. Time reversed acoustics. Phys. Today 50, 34–40 (March, 1997).

    Article  Google Scholar 

  51. 51

    Weaver, R. L. & Lobkis, O. I. Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys. Rev. Lett. 87, 134301 (2001).

    ADS  Article  Google Scholar 

Download references


The authors thank D. Martina and A. Liutkus for help with the GPU implementation of the algorithm, P. Ducellier for the Nokia Lumia 1020 camera-phone, J. Bertolotti for discussions and D. Andreoli for the spectral decorrelation measurements. This work was funded by the European Research Council (grant no. 278025). O.K. was supported by the Marie Curie Intra-European fellowship for career development (IEF) and a Rothschild fellowship.

Author information




O.K. conceived the idea, performed the numerical simulations, wrote the reconstruction algorithm and designed the initial experiments. O.K., P.H. and S.G. discussed the experimental implementation. O.K. and P.H. performed the experiments and analysed the results. O.K, M.F. and S.G. discussed the results. O.K. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Ori Katz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1320 kb)

Supplementary movie 1

Supplementary movie 1 (AVI 802 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katz, O., Heidmann, P., Fink, M. et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photon 8, 784–790 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing