Appl. Phys. Lett. 104, 221105 (2014)

To date, the production of continuous-wave terahertz (THz) sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers operating at room temperature has proved elusive. A critical problem is that, to achieve a large nonlinear susceptibility for frequency conversion, the active region of the quantum cascade laser requires high doping, which elevates the lasing threshold current density. Now, Quan-Yong Lu and colleagues from Northwestern University in the USA have overcome this problem and demonstrated a room-temperature continuous-wave THz source based on difference-frequency generation in quantum cascade lasers. They designed quantum-well structures based on In0.53Ga0.47As/In0.52Al0.48As material system for two mid-infrared wavelengths. The average doping in the active region was about 2.5 × 1016 cm−3. A buried ridge, buried composite distributed-feedback waveguide with the Čerenkov phase-matching scheme was used to reduce the waveguide loss and enhance heat dissipation. As a result, single-mode emission at 3.6 THz was observed at 293 K. The continuous-wave THz power reached 3 μW with a conversion efficiency of 0.44 mW W−2 from mid-infrared to THz waves. Using a similar device design, a THz peak power of 1.4 mW was achieved in pulse mode.