Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-reciprocal phase shift induced by an effective magnetic flux for light


Photons are neutral particles that do not interact directly with a magnetic field. However, recent theoretical work1,2 has shown that an effective magnetic field for photons can exist if the phase of light changes with its direction of propagation. This direction-dependent phase indicates the presence of an effective magnetic field, as shown experimentally for electrons in the Aharonov–Bohm experiment. Here, we replicate this experiment using photons. To create this effective magnetic field we construct an on-chip silicon-based Ramsey-type interferometer3,4,5,6,7. This interferometer has been traditionally used to probe the phase of atomic states and here we apply it to probe the phase of photonic states. We experimentally observe an effective magnetic flux between 0 and 2π corresponding to a non-reciprocal 2π phase shift with an interferometer length of 8.35 mm and an interference-fringe extinction ratio of 2.4 dB. This non-reciprocal phase is comparable to those of common monolithically integrated magneto-optical materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effective magnetic field for light using a Ramsey-type interferometer.
Figure 2: Ramsey-type interferometer design and fabrication.
Figure 3: Effective magnetic field experiment.
Figure 4: Wavelength dependence of the interference effect for the photonic Ramsey-type interferometer.


  1. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article  ADS  Google Scholar 

  2. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon. 6, 782–787 (2012).

    Article  ADS  Google Scholar 

  3. Ramsey, N. F. A new molecular beam resonance method. Phys. Rev. 76, 996 (1949).

    Article  Google Scholar 

  4. Ramsey, N. F. Molecular Beams (Oxford Univ. Press, 1963).

    Google Scholar 

  5. Bordé, C. J. Atomic interferometry with internal state labelling. Phys. Lett. A 140, 10–12 (1989).

    Article  ADS  Google Scholar 

  6. Ramsey, N. F. Experiments with separated oscillatory fields and hydrogen masers. Rev. Mod. Phys. 62, 541–552 (1990).

    Article  ADS  Google Scholar 

  7. Dubetsky, B. & Kasevich, M. A. Atom interferometer as a selective sensor of rotation or gravity. Phys. Rev. A 74, 023615 (2006).

    Article  ADS  Google Scholar 

  8. Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I-W. & Osgood, R. M. Jr Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008).

    Article  ADS  Google Scholar 

  9. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photon. 5, 758–762 (2011).

    Article  ADS  Google Scholar 

  10. Tien, M.-C., Mizumoto, T., Pintus, P., Kromer, H. & Bowers, J. E. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Opt. Express 19, 11740–11745 (2011).

    Article  ADS  Google Scholar 

  11. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  12. Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).

    Article  ADS  Google Scholar 

  13. Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    Article  ADS  Google Scholar 

  14. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  15. Poo, Y., Wu, R., Lin, Z., Yang, Y. & Chan, C. T. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106, 093903 (2011).

    Article  ADS  Google Scholar 

  16. Hwang, I. K., Yun, S. H. & Kim, B. Y. All-fiber-optic nonreciprocal modulator. Opt. Lett. 22, 507–509 (1997).

    Article  ADS  Google Scholar 

  17. Doerr, C. R., Dupuis, N. & Zhang, L. Optical isolator using two tandem phase modulators. Opt. Lett. 36, 4293–4295 (2011).

    Article  ADS  Google Scholar 

  18. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  ADS  Google Scholar 

  19. Doerr, C. R., Chen, L. & Vermeulen, D. Silicon photonics broadband modulation-based isolator. Opt. Express 22, 4493–4498 (2014).

    Article  ADS  Google Scholar 

  20. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  21. Fang, K., Yu, Z. & Fan, S. Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies. Phys. Rev. B 87, 060301(R) 10.1103/PhysRevB.87.060301(2013).

    Article  ADS  Google Scholar 

  22. Soref, R. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    Article  ADS  Google Scholar 

  23. Gardes, F. Y. et al. High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode. Opt. Express 17, 21986–21991 (2009).

    Article  ADS  Google Scholar 

  24. Spector, S. J. et al. Operation and optimization of silicon-diode-based optical modulators. IEEE J. Sel. Top. Quantum Electron. 16, 165–172 (2010).

    Article  ADS  Google Scholar 

  25. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011).

    Article  ADS  Google Scholar 

  26. Umucalilar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    Article  ADS  Google Scholar 

  27. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  28. Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233–239 (2013).

    Article  ADS  Google Scholar 

  29. Liang, G. Q. & Chong, Y. D. Optical resonator analog of a two-dimensional topological insulator. Phys. Rev. Lett. 110, 203904 (2013).

    Article  ADS  Google Scholar 

  30. Longhi, S. Effective magnetic fields for photons in waveguide and coupled resonator lattices. Opt. Lett. 38, 3570–3573 (2013).

    Article  ADS  Google Scholar 

  31. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon. 7, 1001–1005 (2013).

    Article  ADS  Google Scholar 

Download references


This work was supported by the National Science Foundation (NSF) through CIAN ERC (grant no. EEC 0812072) and by NSF grant no. 1202265. This work was performed in part at the Cornell Nanoscale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the NSF. P.N. acknowledges support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grant no. 2011/12140-6). The authors acknowledge support from the US Air Force (AFOSR; program FA9550-09-1-0704 on ‘Robust and Complex on-chip Nanophotonics’ supervised by G. Pomrenke).

Author information

Authors and Affiliations



L.D.T. performed the experiment. L.D.T. and K.F. designed the experiment and analysed the data. P.N., S.F. and M.L. supervised the project. L.D.T and M.L. prepared the manuscript. K.F., P.N. and S.F. edited the manuscript.

Corresponding author

Correspondence to Michal Lipson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 932 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzuang, L., Fang, K., Nussenzveig, P. et al. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nature Photon 8, 701–705 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing