Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ternary blend polymer solar cells with enhanced power conversion efficiency

Subjects

Abstract

The use ternary organic components is currently being pursued to enhance the power conversion efficiency of bulk heterojunction solar cells by expanding the spectral range of light absorption. Here, we report a ternary blend polymer solar cell containing two donor polymers, poly-3-oxothieno[3,4-d]isothiazole-1,1-dioxide/benzodithiophene (PID2), polythieno[3,4-b]-thiophene/benzodithiophene (PTB7) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as an acceptor. The resulting ternary solar cell delivered a power conversion efficiency of 8.22% with a short-circuit current density Jsc of 16.8 mA cm–2, an open-circuit voltage Voc of 0.72 V and a fill factor of 68.7%. In addition to extended light absorption, we show that Jsc is improved through improved charge separation and transport and decreased charge recombination, resulting from the cascade energy levels and optimized device morphology of the ternary system. This work indicates that ternary blend solar cells have the potential to surpass high-performance binary polymer solar cells after further device engineering and optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Material properties and device structure.
Figure 2: Photovoltaic performance of the ternary devices.
Figure 3: Transmission electron microscopy (TEM) characterization of the ternary devices.
Figure 4: 2D GIWAXS patterns of ternary films on PEDOT:PSS-modified Si substrates.
Figure 5

Similar content being viewed by others

References

  1. Son, H. J., He, F., Carsten, B. & Yu, L. P. Are we there yet? Design of better conjugated polymers for polymer solar cells. J. Mater. Chem. 21, 18934–18945 10.3389/fchem.2013.00035(2011).

    Article  Google Scholar 

  2. He, F. & Yu, L. P. How far can polymer solar cells go? In need of a synergistic approach. J. Phys. Chem. Lett. 2, 3102–3113 (2011).

    Article  Google Scholar 

  3. Thompson, B. C. & Frechet, J. M. J. Organic photovoltaics—polymer–fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58–77 (2008).

    Article  Google Scholar 

  4. Liang, Y. Y. & Yu, L. P. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc. Chem. Res. 43, 1227–1236 (2010).

    Article  Google Scholar 

  5. Liang, Y. Y. et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 10.1002/adma.200903528(2010).

    Article  Google Scholar 

  6. Son, H. J. et al. Synthesis and photovoltaic effect in dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers. Adv. Mater. 25, 838–843 (2013).

    Article  Google Scholar 

  7. Small, C. E. et al. High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nature Photon. 6, 115–120 (2012).

    Article  ADS  Google Scholar 

  8. Price, S. C., Stuart, A. C., Yang, L. Q., Zhou, H. X. & You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J. Am. Chem. Soc. 133, 4625–4631 10.1021/ja1112595(2011).

    Article  Google Scholar 

  9. Chu, T. Y. et al. Bulk heterojunction solar cells using thieno 3,4-c pyrrole-4,6-dione and dithieno[3,2-b:2′,3′-d]silole copolymer with a power conversion efficiency of 7.3%. J. Am. Chem. Soc. 133, 4250–4253 (2011).

    Article  Google Scholar 

  10. Piliego, C. et al. Synthetic control of structural order in N-alkylthieno 3,4-c pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132, 7595–7597 (2010).

    Article  Google Scholar 

  11. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    Article  ADS  Google Scholar 

  12. Lee, J. K. et al. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130, 3619–3623 (2008).

    Article  Google Scholar 

  13. Lu, L. et al. The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett. 13, 2365–2369 10.1021/nl304533j(2013).

    Article  ADS  Google Scholar 

  14. Seo, J. H. et al. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J. Am. Chem. Soc. 133, 8416–8419 10.1021/ja2037673(2011).

    Article  Google Scholar 

  15. He, Z. C. et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23, 4636–4643 (2011).

    Article  Google Scholar 

  16. Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  ADS  Google Scholar 

  17. He, Z. C. et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photon. 6, 591–595 10.1038/nphoton.2012.190(2012).

    Article  ADS  Google Scholar 

  18. Koster, L. J. A., Mihailetchi, V. D. & Blom, P. W. M. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 093511 (2006).

    Article  ADS  Google Scholar 

  19. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  Google Scholar 

  20. Honda, S., Ohkita, H., Benten, H. & Ito, S. Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv. Energy Mater. 1, 588–598 (2011).

    Article  Google Scholar 

  21. Honda, S., Ohkita, H., Benten, H. & Ito, S. Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells. Chem. Commun. 46, 6596–6598 (2010).

    Article  Google Scholar 

  22. Huang, J. S. et al. Polymer bulk heterojunction solar cells employing Forster resonance energy transfer. Nature Photon. 7, 480–486 (2013).

    Article  ADS  Google Scholar 

  23. Koppe, M. et al. Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Adv. Funct. Mater. 20, 338–346 (2010).

    Article  Google Scholar 

  24. Ameri, T. et al. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv. Energy Mater. 2, 1198–1202 (2012).

    Article  Google Scholar 

  25. Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 134, 9074–9077 10.1021/ja302935n(2012).

    Article  Google Scholar 

  26. Yang, L., Zhou, H., Price, S. C. & You, W. Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134, 5432–5435 10.1021/ja211597w(2012).

    Article  Google Scholar 

  27. Cha, H. et al. Complementary absorbing star-shaped small molecules for the preparation of ternary cascade energy structures in organic photovoltaic cells. Adv. Funct. Mater. 23, 1556–1565 (2013).

    Article  Google Scholar 

  28. Itskos, G. et al. Optical properties of organic semiconductor blends with near-infrared quantum-dot sensitizers for light harvesting applications. Adv. Energy Mater. 1, 802–812 (2011).

    Article  Google Scholar 

  29. De Freitas, J. N. et al. The effects of CdSe incorporation into bulk heterojunction solar cells. J. Mater. Chem. 20, 4845–4853 10.1039/C0JM00191K(2010).

    Article  Google Scholar 

  30. Belcher, W. J., Wagner, K. I. & Dastoor, P. C. The effect of porphyrin inclusion on the spectral response of ternary P3HT:porphyrin:PCBM bulk heterojunction solar cells. Solar Ener. Mater. Solar Cells 91, 447–452 10.1016/j.solmat.2006.09.007(2007).

    Article  Google Scholar 

  31. Cooling, N. et al. A study of the factors influencing the performance of ternary MEH-PPV:porphyrin:PCBM heterojunction devices: a steric approach to controlling charge recombination. Solar Ener. Mater. Solar Cells 95, 1767–1774 10.1016/j.solmat.2011.01.046(2011).

    Article  Google Scholar 

  32. Machui, F., Rathgeber, S., Li, N., Ameri, T. & Brabec, C. J. Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices. J. Mater. Chem. 22, 15570–15577 10.1039/C2JM31882B(2012).

    Article  Google Scholar 

  33. Hu, Z. J., Tang, S., Ahlvers, A., Khondaker, S. I. & Gesquiere, A. J. Near-infrared photoresponse sensitization of solvent additive processed poly(3-hexylthiophene)/fullerene solar cells by a low band gap polymer. Appl. Phys. Lett. 101, 053308 (2012).

    Article  ADS  Google Scholar 

  34. Huang, J. H., Velusamy, M., Ho, K. C., Lin, J. T. & Chu, C. W. A ternary cascade structure enhances the efficiency of polymer solar cells. J. Mater. Chem. 20, 2820–2825 (2010).

    Article  Google Scholar 

  35. Ameri, T., Khoram, P., Min, J. & Brabec, C. J. Organic ternary solar cells: a review. Adv. Mater. 25, 4245–4266 (2013).

    Article  Google Scholar 

  36. Lu, L. Y., Luo, Z. Q., Xu, T. & Yu, L. P. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 13, 59–64 (2013).

    Article  ADS  Google Scholar 

  37. Wu, J. L. et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5, 959–967 10.1021/nn102295p(2011).

    Article  Google Scholar 

  38. Schilinsky, P., Waldauf, C. & Brabec, C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 81, 3885 (2002).

    Article  ADS  Google Scholar 

  39. Riedel, I. et al. Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 38–44 (2004).

    Article  Google Scholar 

  40. Goh, C., Kline, R. J., McGehee, M. D., Kadnikova, E. N. & Frechet, J. M. J. Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes. Appl. Phys. Lett. 86, 122110 (2005).

    Article  ADS  Google Scholar 

  41. Fang, G. et al. Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures. Org. Electron. 13, 2733–2740 10.1016/j.orgel.2012.08.003(2012).

    Article  Google Scholar 

  42. Hendriks, K. H., Heintges, G. H. L., Gevaerts, V. S., Wienk, M. M. & Janssen, R. A. J. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew. Chem. Int. Ed. 52, 8341–8344 10.1002/anie.201302319(2013).

    Article  Google Scholar 

  43. Lu, X. et al. Bilayer order in a polycarbazole-conjugated polymer. Nature Commun. 3, 795 (2012).

    Article  ADS  Google Scholar 

  44. Smilgies, D.-M. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J. Appl. Crystallogr. 42, 1030–1034 (2009).

    Article  Google Scholar 

  45. Chen, W., Nikiforov, M. P. & Darling, S. B. Morphology characterization in organic and hybrid solar cells. Energy Environ. Sci. 5, 8045–8074 (2012).

    Article  Google Scholar 

  46. Chen, W. et al. Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett. 11, 3707–3713 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the US National Science Foundation (NSF, grant no. NSF CHE-1229089, DMR-1263006), the Air Force Office of Scientific Research and NSF MRSEC programme at the University of Chicago, the DOE via the ANSER Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0001059). W.C. acknowledges financial support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. KC020301). The authors thank J. Strzalka and C. Wang for assistance with GISAXS and RSoXS measurements. Use of the Advanced Photon Source (APS) at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). The ALS at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Contributions

L.Y. conceptualized the project. L.L. designed and performed the device experiments and data analysis. T.X. performed materials synthesis. L.L. characterized film morphology by TEM and AFM. W.C. and E.L. performed X-ray scattering experiments and analyses. All authors discussed the results and L.Y., L.L. and W.C. wrote the manuscript.

Corresponding author

Correspondence to Luping Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Xu, T., Chen, W. et al. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nature Photon 8, 716–722 (2014). https://doi.org/10.1038/nphoton.2014.172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing