Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Band filling with free charge carriers in organometal halide perovskites

Abstract

The unique and promising properties of semiconducting organometal halide perovskites have brought these materials to the forefront of solar energy research. Here, we present new insights into the excited-state properties of CH3NH3PbI3 thin films through femtosecond transient absorption spectroscopy measurements. The photoinduced bleach recovery at 760 nm reveals that band-edge recombination follows second-order kinetics, indicating that the dominant relaxation pathway is via recombination of free electrons and holes. Additionally, charge accumulation in the perovskite films leads to an increase in the intrinsic bandgap that follows the Burstein–Moss band filling model. Both the recombination mechanism and the band-edge shift are studied as a function of the photogenerated carrier density and serve to elucidate the behaviour of charge carriers in hybrid perovskites. These results offer insights into the intrinsic photophysics of semiconducting organometal halide perovskites with direct implications for photovoltaic and optoelectronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ground- and excited-state absorption spectra of CH3NH3PbI3.
Figure 2: Excited-state dynamics of CH3NH3PbI3.
Figure 3: Dynamic Burstein–Moss analysis.

Similar content being viewed by others

References

  1. Mitzi, D. B., Feild, C. A., Schlesinger, Z. & Laibowitz, R. B. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3 . J. Solid State Chem. 114, 159–163 10.1038/nature12340(1995).

    Article  ADS  Google Scholar 

  2. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    Article  Google Scholar 

  3. Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Design, structure, and optical properties of organic–inorganic perovskites containing an oligothiophene chromophore. Inorg. Chem. 38, 6246–6256 (1999).

    Article  Google Scholar 

  4. Hattori, T., Taira, T., Era, M., Tsutsui, T. & Saito, S. Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chem. Phys. Lett. 254, 103–108 (1996).

    Article  ADS  Google Scholar 

  5. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  6. Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

    Article  Google Scholar 

  7. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  8. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  Google Scholar 

  9. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

    Article  ADS  Google Scholar 

  10. Christians, J. A., Fung, R. C. M. & Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014).

    Article  Google Scholar 

  11. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  12. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  13. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  14. Liang, K., Mitzi, D. B. & Prikas, M. T. Synthesis and characterization of organic–inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998).

    Article  Google Scholar 

  15. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  ADS  Google Scholar 

  16. Hodes, G. Perovskite-based solar cells. Science 342, 317–318 (2013).

    Article  ADS  Google Scholar 

  17. Park, N. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).

    Article  Google Scholar 

  18. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  ADS  Google Scholar 

  19. Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E. & Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Commun. 4, 2761 (2013).

    Article  ADS  Google Scholar 

  20. Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 486–491 (2013).

    Article  ADS  Google Scholar 

  21. Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    Article  Google Scholar 

  22. Tvrdy, K., Frantsuzov, P. A. & Kamat, P. V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl Acad. Sci. USA 108, 29–34 (2011).

    Article  ADS  Google Scholar 

  23. Abrusci, A. et al. High-performance perovskite–polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124–3128 (2013).

    Article  ADS  Google Scholar 

  24. Zhao, Y. & Zhu, K. Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J. Phys. Chem. Lett. 4, 2880–2884 (2013).

    Article  Google Scholar 

  25. Christians, J. A., Leighton, D. T. & Kamat, P. V. Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells. Energy Environ. Sci. 7, 1148–1158 (2014).

    Article  Google Scholar 

  26. Ghanassi, M. et al. Time-resolved measurements of carrier recombination in experimental semiconductor-doped glasses: confirmation of the role of Auger recombination. Appl. Phys. Lett. 62, 78 (1993).

    Article  ADS  Google Scholar 

  27. Robel, I., Bunker, B. A., Kamat, P. V & Kuno, M. Exciton recombination dynamics in CdSe nanowires: bimolecular to three-carrier Auger kinetics. Nano Lett. 6, 1344–1349 (2006).

    Article  ADS  Google Scholar 

  28. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  Google Scholar 

  29. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014).

    Article  ADS  Google Scholar 

  30. Deschler, F. et al. High photoluminescence efficiency and optically-pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  Google Scholar 

  31. Marchioro, A. et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photon. 8, 250–255 (2014).

    Article  ADS  Google Scholar 

  32. Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954).

    Article  ADS  Google Scholar 

  33. Moss, T. S. The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67, 775–782 (1954).

    Article  ADS  Google Scholar 

  34. Kamat, P. V., Dimitrijevic, N. M. & Nozik, A. J. Dynamic Burstein–Moss shift in semiconductor colloids. J. Phys. Chem. 93, 2873–2875 (1989).

    Article  Google Scholar 

  35. Kawamura, K., Maekawa, K., Yanagi, H., Hirano, M. & Hosono, H. Observation of carrier dynamics in CdO thin films by excitation with femtosecond laser pulse. Thin Solid Films 445, 182–185 (2003).

    Article  ADS  Google Scholar 

  36. Hickey, S. G., Riley, D. J. & Tull, E. J. Photoelectrochemical studies of CdS nanoparticle modified electrodes: absorption and photocurrent investigations. J. Phys. Chem. B 104, 7623–7626 (2000).

    Article  Google Scholar 

  37. Muñoz, M. et al. Burstein–Moss shift of n-doped In0.53Ga0.47As/InP. Phys. Rev. B 63, 233302 (2001).

    Article  ADS  Google Scholar 

  38. Giorgi, G., Fujisawa, J., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).

    Article  Google Scholar 

  39. Vodopyanov, K., Graener, H., Phillips, C. & Tate, T. Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature. Phys. Rev. B 46, 13194–13200 (1992).

    Article  ADS  Google Scholar 

  40. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 . Solid State Commun. 127, 619–623 (2003).

    Article  ADS  Google Scholar 

  41. Hamberg, I. & Granqvist, C. G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123 (1986).

    Article  ADS  Google Scholar 

  42. Kim, H.-S. et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Commun. 4, 2242 10.1038/ncomms3242(2013).

    Article  ADS  Google Scholar 

  43. Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. & Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 . Phys. B Condens. Matter 201, 427–430 (1994).

    Article  ADS  Google Scholar 

  44. Sun, S. et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014).

    Article  Google Scholar 

  45. Amo, A., Martín, M., Viña, L., Toropov, A. & Zhuravlev, K. Interplay of exciton and electron–hole plasma recombination on the photoluminescence dynamics in bulk GaAs. Phys. Rev. B 73, 035205 (2006).

    Article  ADS  Google Scholar 

  46. Burstein, E. Exciton-polaritons in nonlinear optical phenomena in semiconductors: an overview of major developments. Phys. Rep. 194, 253–272 (1990).

    Article  ADS  Google Scholar 

  47. Gay, J. Screening of excitons in semiconductors. Phys. Rev. B 4, 2567–2575 (1971).

    Article  ADS  Google Scholar 

  48. Schweizer, H. et al. Ionization of the direct-gap exciton in photoexcited germanium. Phys. Rev. Lett. 51, 698–701 (1983).

    Article  ADS  Google Scholar 

  49. Li, X. D., Chen, T. P., Liu, P., Liu, Y. & Leong, K. C. Effects of free electrons and quantum confinement in ultrathin ZnO films: a comparison between undoped and Al-doped ZnO. Opt. Express 21, 14131–14138 (2013).

    Article  ADS  Google Scholar 

  50. Thomas, G. A. & Rice, T. M. Trions, molecules and excitons above the Mott density in Ge. Solid State Commun. 23, 359–363 (1977).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Christians for his input on perovskite film preparation and discussion of experimental outcomes. The authors thank G. Hartland and M. Kuno for their commentary and interpretation of experimental results. The authors acknowledge the Center for Sustainable Energy at Notre Dame (cSEND) Materials Characterization Facilities for the use of the Bruker DektakXT profilometer. The research described herein was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (award DE-FC02-04ER15533). This is contribution number NDRL No. 5004 from the Notre Dame Radiation Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

J.S.M. and P.V.K. conceived the original experimental ideas and details. J.S.M. carried out all aspects of film preparation and optical measurements. J.S.M. prepared the figures and wrote the initial draft. Both authors contributed to the discussion, analysis and writing of the final paper.

Corresponding author

Correspondence to Prashant V. Kamat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manser, J., Kamat, P. Band filling with free charge carriers in organometal halide perovskites. Nature Photon 8, 737–743 (2014). https://doi.org/10.1038/nphoton.2014.171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing