Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-throughput optical screening of cellular mechanotransduction

Abstract

We introduce an optical platform for rapid, high-throughput screening of exogenous molecules that affect cellular mechanotransduction. Our method initiates mechanotransduction in adherent cells using single laser-microbeam generated microcavitation bubbles without requiring flow chambers or microfluidics. These microcavitation bubbles expose adherent cells to a microtsunami, a transient microscale burst of hydrodynamic shear stress, which stimulates cells over areas approaching 1 mm2. We demonstrate microtsunami-initiated mechanosignalling in primary human endothelial cells. This observed signalling is consistent with G-protein-coupled receptor stimulation, resulting in Ca2+ release by the endoplasmic reticulum. Moreover, we demonstrate the dose-dependent modulation of microtsunami-induced Ca2+ signalling by introducing a known inhibitor to this pathway. The imaging of Ca2+ signalling and its modulation by exogenous molecules demonstrates the capacity to initiate and assess cellular mechanosignalling in real time. We utilize this capability to screen the effects of a set of small molecules on cellular mechanotransduction in 96-well plates using standard imaging cytometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pulsed laser microbeam exposes adherent cells to a transient μCB.
Figure 2: Radial dependence of a μtsunami-generated hydrodynamic shear stress impulse.
Figure 3: Ca2+ signalling following μtsunami exposure.
Figure 4: Dose-dependent effect of IP3 inhibitor on μtsumani-induced Ca2+ signalling.
Figure 5: Use of μtsunamis for HTS.

Similar content being viewed by others

References

  1. Wang, Y. et al. Visualizing the mechanical activation of Src. Nature 434, 1040–1045 (2005).

    Article  ADS  Google Scholar 

  2. Peyton, S. R., Raub, C. B., Keschrumrus, V. P. & Putnam, A. J. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27, 4881–4893 (2006).

    Article  Google Scholar 

  3. Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).

    Article  ADS  Google Scholar 

  4. Discher, D. E., Janmey, P. & Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  ADS  Google Scholar 

  5. Ingber, D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997).

    Article  Google Scholar 

  6. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292, H1209–H1224 (2007).

    Article  Google Scholar 

  7. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 10, 63–73 (2009).

    Article  Google Scholar 

  8. Orr, A. W., Helmke, B. P., Blackman, B. R. & Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006).

    Article  Google Scholar 

  9. Ingber, D. E. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35, 564–577 (2003).

    Google Scholar 

  10. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nature Rev. Mol. Cell Biol. 10, 53–62 (2009).

    Article  Google Scholar 

  11. Gottlieb, P. A., Suchyna, T. M., Ostrow, L. W. & Sachs, F. Mechanosensitive ion channels as drug targets. Curr. Drug Targets CNS Neurol. Disord. 3, 287–295 (2004).

    Article  Google Scholar 

  12. Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011).

    Article  Google Scholar 

  13. Apic, G., Ignjatovic, T., Boyer, S. & Russell, R. B. Illuminating drug discovery with biological pathways. FEBS Lett. 579, 1872–1877 (2005).

    Article  Google Scholar 

  14. Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).

    Article  ADS  Google Scholar 

  15. Rudin, M. & Weissleder, R. Molecular imaging in drug discovery and development. Nature Rev. Drug Discov. 2, 123–131 (2003).

    Article  Google Scholar 

  16. Charras, G. T. & Horton, M. A. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82, 2970–2981 (2002).

    Article  ADS  Google Scholar 

  17. Chien, S. Effects of disturbed flow on endothelial cells. Ann. Biomed. Eng. 36, 554–562 (2008).

    Article  Google Scholar 

  18. Valberg, P. A. & Butler, J. P. Magnetic particle motions within living cells. Physical theory and techniques. Biophys. J. 52, 537–550 (1987).

    Article  ADS  Google Scholar 

  19. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  Google Scholar 

  20. Shergill, B., Meloty-Kapella, L., Musse, A. A., Weinmaster, G. & Botvinick, E. Optical tweezers studies on notch: single-molecule interaction strength is independent of ligand endocytosis. Dev. Cell 22, 1313–1320 (2012).

    Article  Google Scholar 

  21. Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E. & Weinmaster, G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 22, 1299–1312 (2012).

    Article  Google Scholar 

  22. Rau, K. R., Quinto-Su, P. A., Hellman, A. N. & Venugopalan, V. Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects. Biophys. J. 91, 317–329 (2006).

    Article  ADS  Google Scholar 

  23. Hellman, A. N., Rau, K. R., Yoon, H. H. & Venugopalan, V. Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery. J. Biophoton. 1, 24–35 (2008).

    Article  Google Scholar 

  24. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995).

    Article  Google Scholar 

  25. Tran, Q.-K. & Watanabe, H. Calcium signalling in the endothelium. Handb. Exp. Pharmacol. 2, 145–187 (2006).

    Article  Google Scholar 

  26. Kuchan, M. J. & Frangos, J. A. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266, C628–C636 (1994).

    Article  Google Scholar 

  27. Palmer, A. E. & Tsien, R. Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nature Protoc. 1, 1057–1065 (2006).

    Article  Google Scholar 

  28. Liu, B., Lu, S., Zheng, S., Jiang, Z. & Wang, Y. Two distinct phases of calcium signalling under flow. Cardiovasc. Res. 91, 124–133 (2011).

    Article  Google Scholar 

  29. Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003).

    Article  Google Scholar 

  30. Vogel, A., Noack, J., Hüttman, G. & Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005).

    Article  ADS  Google Scholar 

  31. Venugopalan, V., Guerra, A., Nahen, K. & Vogel, A. Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation. Phys. Rev. Lett. 88, 078103 (2002).

    Article  ADS  Google Scholar 

  32. Vogel, A. Nonlinear absorption: intraocular microsurgery and laser lithotripsy. Phys. Med. Biol. 42, 895–912 (1997).

    Article  Google Scholar 

  33. Stevenson, D. J., Gunn-Moore, F. J., Campbell, P. & Dholakia, K. Single cell optical transfection. J. R. Soc. Interface 7, 863–871 (2010).

    Article  Google Scholar 

  34. Gilmore, F. R. The Growth or Collapse of a Spherical Bubble in a Viscous Liquid (Office of Naval Research, 1952).

    Google Scholar 

  35. Knapp, R. T., Daily, J. W. & Hammitt, F. G. Cavitation (McGraw-Hill, 1970).

    Google Scholar 

  36. Vogel, A., Busch, S. & Parlitz, U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100, 148 (1996).

    Article  ADS  Google Scholar 

  37. Vogel, A., Linz, N., Freidank, S. & Paltauf, G. Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. Phys. Rev. Lett. 100, 038102 (2008).

    Article  ADS  Google Scholar 

  38. Compton, J. L., Hellman, A. N. & Venugopalan, V. Hydrodynamic determinants of cell necrosis and molecular delivery produced by pulsed laser microbeam irradiation of adherent cells. Biophys. J. 105, 2221–2231 (2013).

    Article  ADS  Google Scholar 

  39. Malek, A. M., Alper, S. L. & Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. Am. J. Physiol. 282, 2035–2042 (1999).

    Google Scholar 

  40. Bishara, N. B., Murphy, T. V. & Hill, M. A. Capacitative Ca2+ entry in vascular endothelial cells is mediated via pathways sensitive to 2-aminoethoxydiphenyl borate and xestospongin C. Br. J. Pharmacol. 135, 119–128 (2002).

    Article  Google Scholar 

  41. Demer, L. L., Wortham, C. M., Dirksen, E. R. & Sanderson, M. J. Mechanical stimulation induces intercellular calcium signaling in bovine aortic endothelial cells. Am. J. Physiol. 264, H2094–H2102 (1993).

    Google Scholar 

  42. Seong, J., Lu, S. & Wang, Y. Live cell imaging of Src/FAK signaling by FRET. Cell. Mol. Bioeng. 4, 138–147 (2011).

    Article  Google Scholar 

  43. Cherian, A. V. & Rau, K. R. Pulsed-laser-induced damage in rat corneas: time-resolved imaging of physical effects and acute biological response. J. Biomed. Opt. 13, 024009 (2008).

    Article  ADS  Google Scholar 

  44. Edelstein, A. et al., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. in Current Protocols in Molecular Biology (eds Ausubel, F. M. et al.) Ch. 14, Unit 14.20 (Wiley, 2010).

    Google Scholar 

  45. Palmer, A. E. & Tsien, R. Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nature Protoc. 1, 1057–1065 (2006).

    Article  Google Scholar 

  46. Park, J. W., Vahidi, B., Taylor, A. M., Rhee, S. W. & Jeon, N. L. Microfluidic culture platform for neuroscience research. Nature Protoc. 1, 2128–2136 (2006).

    Article  Google Scholar 

  47. Yang, M. T., Fu, J., Wang, Y.-K., Desai, R. A. & Chen, C. S. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nature Protoc. 6, 187–213 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Hellman for her early contributions to this research, M. Khine for assistance with microfabrication and C. Hughes for supplying HUVECs. This research was funded through the Laser Microbeam and Medical Program, a National Biomedical Technology Resource (P41-EB015890) supported by the National Institutes of Health, the National Science Foundation through the Integrative Graduate Education and Research Traineeship (IGERT) Program (DGE-1144901), and UC Irvine through the I3 Award Program.

Author information

Authors and Affiliations

Authors

Contributions

E.B. and V.V. conceived the project. J.L.C., J.C.L., E.B. and V.V. designed the experiments. J.L.C., J.C.L. and H.M. performed the experiments. J.L.C. and V.V. developed the hydrodynamic model. J.L.C., J.C.L., E.B. and V.V. performed the data analysis. J.L.C., J.C.L., E.B. and V.V. wrote the manuscript.

Corresponding authors

Correspondence to Elliot Botvinick or Vasan Venugopalan.

Ethics declarations

Competing interests

Authors Compton, Botvinick and Venugopalan filed a non-provisional US patent application “Mechanical Stress Response Analysis of Cells and Tissues” Serial No. 14/046,804 on 4 October 2013 based on the findings of this study.

Supplementary information

Supplementary information

Supplementary information (PDF 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Compton, J., Luo, J., Ma, H. et al. High-throughput optical screening of cellular mechanotransduction. Nature Photon 8, 710–715 (2014). https://doi.org/10.1038/nphoton.2014.165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing