Abstract
Fundamental quantum noise limits the precision of quantum-based detectors, for example limiting the ultimate precision of atomic clocks, which have applications in communication, navigation and tests of fundamental physics. Collective measurements of many quantum spins can project the ensemble into an entangled, spin-squeezed state with improved quantum-limited measurement resolution. However, measurement back-action has limited previous implementations of collective measurements to only modest observed enhancements in precision. Here, we experimentally demonstrate a collective measurement with reduced measurement back-action to produce and directly observe, with no background subtraction, a spin-squeezed state with phase resolution improved by a factor of 10.5(1.5) in variance, or 10.2(6) dB, compared to the initially unentangled ensemble of N = 4.8 × 105 87Rb atoms. The measurement uses a cavity-enhanced probe of an optical cycling transition, mitigating back-action associated with state-changing transitions induced by the probe. This work establishes collective measurements as a powerful technique for generating useful entanglement for precision measurements.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Approaching optimal entangling collective measurements on quantum computing platforms
Nature Physics Open Access 12 January 2023
-
Entanglement-enhanced matter-wave interferometry in a high-finesse cavity
Nature Open Access 19 October 2022
-
Creation of Greenberger-Horne-Zeilinger states with thousands of atoms by entanglement amplification
npj Quantum Information Open Access 05 February 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).
Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).
Eckert, K. et al. Quantum non-demolition detection of strongly correlated systems. Nature Phys. 4, 50–54 (2007).
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).
Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007).
Ristè, D. et al. Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature 502, 350–354 (2013).
Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).
Kuzmich, A., Bigelow, N. P. & Mandel, L. Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. 42, 481–486 (1998).
Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).
Gustavson, T. L., Bouyer, P. & Kasevich, M. A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046–2049 (1997).
Hinkley, N. et al. An atomic clock with 10−18 instability. Science 341, 1215–1218 (2013).
Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).
Orzel, C. Searching for new physics through atomic, molecular and optical precision measurements. Phys. Scripta 86, 068101–68109 (2012).
Itano, W. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).
Eichler, C. et al. Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107, 113601 (2011).
Eberle, T. et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010).
Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).
Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).
Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).
Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).
Chen, Z., Bohnet, J. G., Sankar, S. R., Dai, J. & Thompson, J. K. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting. Phys. Rev. Lett. 106, 133601 (2011).
Sewell, R. J. et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012).
Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001).
Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).
Monz, T. et al. 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).
Noguchi, A., Toyoda, K. & Urabe, S. Generation of Dicke states with phonon-mediated multilevel stimulated Raman adiabatic passage. Phys. Rev. Lett. 109, 260502 (2012).
Estève, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing and entanglement in a Bose–Einstein condensate. Nature 455, 1216–1219 (2008).
Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).
Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).
Bücker, R. et al. Twin-atom beams. Nature Phys. 7, 608–611 (2011).
Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011).
Hamley, C. D., Gerving, C. S., Hoang, T. M., Bookjans, E. M. & Chapman, M. S. Spin nematic squeezed vacuum in a quantum gas. Nature Phys. 8, 305–308 (2012).
Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).
Chen, Z., Bohnet, J. G., Weiner, J. M., Cox, K. C. & Thompson, J. K. Cavity-aided nondemolition measurements for atom counting and spin squeezing. Phys. Rev. A 89, 043837 (2014).
Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980).
Saffman, M., Oblak, D., Appel, J. & Polzik, E. S. Spin squeezing of atomic ensembles by multicolor quantum nondemolition measurements. Phys. Rev. A 79, 023831 (2009).
Zhang, H. et al. Collective state measurement of mesoscopic ensembles with single-atom resolution. Phys. Rev. Lett. 109, 133603 (2012).
Gil, L. I. R., Mukherjee, R., Bridge, E. M., Jones, M. P. A. & Pohl, T. Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014).
Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s. Phys. Rev. Lett. 109, 230801 (2012).
Westergaard, P. G. et al. Lattice-induced frequency shifts in Sr optical lattice clocks at the 10−17 level. Phys. Rev. Lett. 106, 210801 (2011).
Westergaard, P., Lodewyck, J. & Lemonde, P. Minimizing the Dick effect in an optical lattice clock. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 623–628 (2010).
Lücke, B. et al. Detecting multiparticle entanglement of Dicke states. Phys. Rev. Lett. 112, 155304 (2014).
Acknowledgements
The authors acknowledge K. McAlpine's early contributions to building detectors and helpful discussions with A. M. Rey and K. W. Lehnert. The authors acknowledge financial support from the Defense Advanced Research Projects Agency Quantum Assisted Sensing and Readout project (DARPA QuASAR), the Army Research Office (ARO), the National Science Foundation Physics Frontier Center (NSF PFC) and the National Institute of Standards and Technology (NIST). J.G.B. acknowledges support from the National Science Foundation Graduate Research Fellowship (NSF GRF) and K.C.C. acknowledges support from the National Defense Science and Engineering Fellowship (NDSEG). This material is based upon work supported by the National Science Foundation (grant no. 1125844).
Author information
Authors and Affiliations
Contributions
J.G.B., K.C.C., M.A.N. and J.M.W. designed and performed experiments and analysed data. Z.C. provided analytic support. J.K.T. designed the experiment and analysed data. J.G.B. wrote the manuscript and all authors provided feedback for the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 998 kb)
Rights and permissions
About this article
Cite this article
Bohnet, J., Cox, K., Norcia, M. et al. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Nature Photon 8, 731–736 (2014). https://doi.org/10.1038/nphoton.2014.151
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2014.151
This article is cited by
-
Approaching optimal entangling collective measurements on quantum computing platforms
Nature Physics (2023)
-
Time-reversal-based quantum metrology with many-body entangled states
Nature Physics (2022)
-
Entanglement-enhanced matter-wave interferometry in a high-finesse cavity
Nature (2022)
-
Creation of Greenberger-Horne-Zeilinger states with thousands of atoms by entanglement amplification
npj Quantum Information (2021)
-
Prospects and challenges for squeezing-enhanced optical atomic clocks
Nature Communications (2020)