Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit

Abstract

Fundamental quantum noise limits the precision of quantum-based detectors, for example limiting the ultimate precision of atomic clocks, which have applications in communication, navigation and tests of fundamental physics. Collective measurements of many quantum spins can project the ensemble into an entangled, spin-squeezed state with improved quantum-limited measurement resolution. However, measurement back-action has limited previous implementations of collective measurements to only modest observed enhancements in precision. Here, we experimentally demonstrate a collective measurement with reduced measurement back-action to produce and directly observe, with no background subtraction, a spin-squeezed state with phase resolution improved by a factor of 10.5(1.5) in variance, or 10.2(6) dB, compared to the initially unentangled ensemble of N = 4.8 × 10587Rb atoms. The measurement uses a cavity-enhanced probe of an optical cycling transition, mitigating back-action associated with state-changing transitions induced by the probe. This work establishes collective measurements as a powerful technique for generating useful entanglement for precision measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin-squeezing and measurement back-action.
Figure 2: Detection of a quantum phase with entanglement-enhanced sensitivity.
Figure 3: Spin-squeezing and probe-induced back-action.
Figure 4: Absolute phase sensitivity versus N.

Similar content being viewed by others

References

  1. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    Article  ADS  Google Scholar 

  2. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  3. Eckert, K. et al. Quantum non-demolition detection of strongly correlated systems. Nature Phys. 4, 50–54 (2007).

    Article  ADS  Google Scholar 

  4. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  Google Scholar 

  5. Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007).

    Article  ADS  Google Scholar 

  6. Ristè, D. et al. Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature 502, 350–354 (2013).

    Article  ADS  Google Scholar 

  7. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    Article  ADS  Google Scholar 

  8. Kuzmich, A., Bigelow, N. P. & Mandel, L. Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. 42, 481–486 (1998).

    Article  ADS  Google Scholar 

  9. Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).

    Article  ADS  Google Scholar 

  10. Gustavson, T. L., Bouyer, P. & Kasevich, M. A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046–2049 (1997).

    Article  ADS  Google Scholar 

  11. Hinkley, N. et al. An atomic clock with 10−18 instability. Science 341, 1215–1218 (2013).

    Article  ADS  Google Scholar 

  12. Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

    Article  ADS  Google Scholar 

  13. Orzel, C. Searching for new physics through atomic, molecular and optical precision measurements. Phys. Scripta 86, 068101–68109 (2012).

    Article  ADS  Google Scholar 

  14. Itano, W. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    Article  ADS  Google Scholar 

  15. Eichler, C. et al. Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107, 113601 (2011).

    Article  ADS  Google Scholar 

  16. Eberle, T. et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010).

    Article  ADS  Google Scholar 

  17. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article  ADS  Google Scholar 

  18. Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article  ADS  Google Scholar 

  19. Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

    Article  ADS  Google Scholar 

  20. Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

    Article  ADS  Google Scholar 

  21. Chen, Z., Bohnet, J. G., Sankar, S. R., Dai, J. & Thompson, J. K. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting. Phys. Rev. Lett. 106, 133601 (2011).

    Article  ADS  Google Scholar 

  22. Sewell, R. J. et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012).

    Article  ADS  Google Scholar 

  23. Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001).

    Article  ADS  Google Scholar 

  24. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article  ADS  Google Scholar 

  25. Monz, T. et al. 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    Article  ADS  Google Scholar 

  26. Noguchi, A., Toyoda, K. & Urabe, S. Generation of Dicke states with phonon-mediated multilevel stimulated Raman adiabatic passage. Phys. Rev. Lett. 109, 260502 (2012).

    Article  ADS  Google Scholar 

  27. Estève, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing and entanglement in a Bose–Einstein condensate. Nature 455, 1216–1219 (2008).

    Article  ADS  Google Scholar 

  28. Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    Article  ADS  Google Scholar 

  29. Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    Article  ADS  Google Scholar 

  30. Bücker, R. et al. Twin-atom beams. Nature Phys. 7, 608–611 (2011).

    Article  ADS  Google Scholar 

  31. Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011).

    Article  ADS  Google Scholar 

  32. Hamley, C. D., Gerving, C. S., Hoang, T. M., Bookjans, E. M. & Chapman, M. S. Spin nematic squeezed vacuum in a quantum gas. Nature Phys. 8, 305–308 (2012).

    Article  ADS  Google Scholar 

  33. Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article  ADS  Google Scholar 

  34. Chen, Z., Bohnet, J. G., Weiner, J. M., Cox, K. C. & Thompson, J. K. Cavity-aided nondemolition measurements for atom counting and spin squeezing. Phys. Rev. A 89, 043837 (2014).

    Article  ADS  Google Scholar 

  35. Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980).

    Article  ADS  Google Scholar 

  36. Saffman, M., Oblak, D., Appel, J. & Polzik, E. S. Spin squeezing of atomic ensembles by multicolor quantum nondemolition measurements. Phys. Rev. A 79, 023831 (2009).

    Article  ADS  Google Scholar 

  37. Zhang, H. et al. Collective state measurement of mesoscopic ensembles with single-atom resolution. Phys. Rev. Lett. 109, 133603 (2012).

    Article  ADS  Google Scholar 

  38. Gil, L. I. R., Mukherjee, R., Bridge, E. M., Jones, M. P. A. & Pohl, T. Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014).

    Article  ADS  Google Scholar 

  39. Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s. Phys. Rev. Lett. 109, 230801 (2012).

    Article  ADS  Google Scholar 

  40. Westergaard, P. G. et al. Lattice-induced frequency shifts in Sr optical lattice clocks at the 10−17 level. Phys. Rev. Lett. 106, 210801 (2011).

    Article  ADS  Google Scholar 

  41. Westergaard, P., Lodewyck, J. & Lemonde, P. Minimizing the Dick effect in an optical lattice clock. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 623–628 (2010).

    Article  Google Scholar 

  42. Lücke, B. et al. Detecting multiparticle entanglement of Dicke states. Phys. Rev. Lett. 112, 155304 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge K. McAlpine's early contributions to building detectors and helpful discussions with A. M. Rey and K. W. Lehnert. The authors acknowledge financial support from the Defense Advanced Research Projects Agency Quantum Assisted Sensing and Readout project (DARPA QuASAR), the Army Research Office (ARO), the National Science Foundation Physics Frontier Center (NSF PFC) and the National Institute of Standards and Technology (NIST). J.G.B. acknowledges support from the National Science Foundation Graduate Research Fellowship (NSF GRF) and K.C.C. acknowledges support from the National Defense Science and Engineering Fellowship (NDSEG). This material is based upon work supported by the National Science Foundation (grant no. 1125844).

Author information

Authors and Affiliations

Authors

Contributions

J.G.B., K.C.C., M.A.N. and J.M.W. designed and performed experiments and analysed data. Z.C. provided analytic support. J.K.T. designed the experiment and analysed data. J.G.B. wrote the manuscript and all authors provided feedback for the manuscript.

Corresponding author

Correspondence to J. K. Thompson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 998 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohnet, J., Cox, K., Norcia, M. et al. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Nature Photon 8, 731–736 (2014). https://doi.org/10.1038/nphoton.2014.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing