Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capture of a terahertz wave in a photonic-crystal slab

Abstract

With many potential applications in mind, great effort is being applied to develop a terahertz-wave technology platform on which waves can be manipulated with sufficient confinement and efficient interaction for the development of smart components. Here, we utilize the in-plane resonance of a thin, planar photonic-crystal slab with negligible absorption loss to successfully demonstrate and visualize terahertz-wave trapping. We artificially introduce free carriers, which interact with the trapped waves, and capture them in the slab by absorption. Our system exhibits an experimental absorptivity (interaction efficiency) of 99% and a broad bandwidth (absorptivity of ≥90%) that covers 17% of the centre frequency. We also demonstrate its application to the stabilization of terahertz wireless communication systems. Our study shows the capability of photonic crystals as a terahertz-wave platform, the application of which may be extended to other components including filters, couplers, antennas, detectors, modulators, switches and emitters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of THz-wave trapping for broadband operation.
Figure 2: Design of photonic-crystal THz-wave absorber.
Figure 3: Fabricated photonic crystal.
Figure 4: Spectrograms of reflection from samples for demonstration of THz-wave trapping and capture.
Figure 5: Absorption spectra.
Figure 6: Application of photonic-crystal absorber to the THz communication system.

Similar content being viewed by others

References

  1. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002).

    Article  ADS  Google Scholar 

  2. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  3. Nagatsuma, T. Terahertz technologies: present and future. IEICE Electron. Exp. 8, 1127–1142 (2011).

    Article  Google Scholar 

  4. Mittleman, D. M. Frontiers in terahertz sources and plasmonics. Nature Photon. 7, 666–669 (2013).

    Article  ADS  Google Scholar 

  5. Mittleman, D. M. et al. Recent advances in terahertz imaging. Appl. Phys. B 68, 1085–1094 (1999).

    Article  ADS  Google Scholar 

  6. Pickwell, E. & Wallace, V. P. Biomedical applications of terahertz technology. J. Phys. D 39, R301–R310 (2006).

    Article  ADS  Google Scholar 

  7. Shen, Y.-C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int. J. Pharm. 417, 48–60 (2011).

    Article  Google Scholar 

  8. Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004).

    Article  ADS  Google Scholar 

  9. Kleine-Ostmann, T. & Nagatsuma, T. A review on terahertz communications research. J. Infrared Millim. Terahertz Waves 32, 143–171 (2011).

    Article  Google Scholar 

  10. Nagatsuma, T. et al. Terahertz wireless communications based on photonics technologies. Opt. Express 21, 23736–23747 (2013).

    Article  ADS  Google Scholar 

  11. Porterfield, D. W. et al. Resonant metal-mesh bandpass filters for the far infrared. Appl. Opt. 33, 6056–6052 (1994).

    Article  ADS  Google Scholar 

  12. Winnewisser, C., Lewen, F. & Helm, H. Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy. Appl. Phys. 66, 593–598 (1998).

    Article  Google Scholar 

  13. Mendis, R. & Grischkowsky, D. Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt. Lett. 26, 846–848 (2001).

    Article  ADS  Google Scholar 

  14. Dunbar, L. A. et al. Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors. Opt. Express 13, 8960–8968 (2005).

    Article  ADS  Google Scholar 

  15. Kröll, J., Darmo, J. & Unterrainer, K. Metallic wave-impedance matching layers for broadband terahertz optical systems. Opt. Express 15, 6552–6560 (2007).

    Article  ADS  Google Scholar 

  16. Chen, H.-Y. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Article  ADS  Google Scholar 

  17. Reinhard, B., Paul, O. & Rahm, M. Metamaterial-based photonic devices for terahertz technology. IEEE J. Sel. Top. Quantum Electron. 19, 8500912 (2013).

    Article  ADS  Google Scholar 

  18. Kanskar, M. et al. Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice. Appl. Phys. Lett. 70, 1438–1440 (1997).

    Article  ADS  Google Scholar 

  19. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  20. Noda, S., Chutinan, A. & Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000).

    Article  ADS  Google Scholar 

  21. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  22. Lončar, M., Scherer, A. & Qiu, Y. Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648–4640 (2003).

    Article  ADS  Google Scholar 

  23. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystal. Science 308, 1296–1298 (2005).

    Article  ADS  Google Scholar 

  24. Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

    Article  ADS  Google Scholar 

  25. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  ADS  Google Scholar 

  26. Roelkens, G. et al. Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures. J. Nanosci. Nanotech. 10, 1551–1562 (2010).

    Article  Google Scholar 

  27. Notomi, M. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys. 73, 096501 (2010).

    Article  ADS  Google Scholar 

  28. O'Faolain, L. et al. Compact optical switches and modulators based on dispersion engineered photonic crystals. IEEE Photon. J. 2, 404–414 (2010).

    Article  ADS  Google Scholar 

  29. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  30. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  31. Yablonovitch, E. et al. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991).

    Article  ADS  Google Scholar 

  32. Özbay, E. et al. Terahertz spectroscopy of three-dimensional photonic band-gap crystals. Opt. Lett. 19, 1155–1157 (1994).

    Article  ADS  Google Scholar 

  33. Prasad, T., Covin, V. L. & Mittleman, D. M. Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs. J. Opt. Soc. Am. B 25, 633–644 (2008).

    Article  ADS  Google Scholar 

  34. Yee, C. M. & Sherwin, M. S. High-Q terahertz microcavities in silicon photonic crystal slabs. Appl. Phys. Lett. 94, 154104 (2009).

    Article  ADS  Google Scholar 

  35. Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    Article  ADS  Google Scholar 

  36. Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7–9 (1999).

    Article  ADS  Google Scholar 

  37. De Zoysa, M. et al. Conversion of broadband to narrowband thermal emission through energy recycling. Nature Photon. 6, 535–539 (2012).

    Article  ADS  Google Scholar 

  38. Shigeta, H. et al. Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals. Appl. Phys. Lett. 101, 161103 (2012).

    Article  ADS  Google Scholar 

  39. Roux, J.-F., Aquistapace, F., Garet, F., Duvillaret, L. & Coutaz, J.-L. Grating-assisted coupling of terahertz waves into a dielectric waveguide studied by terahertz time-domain spectroscopy. Appl. Opt. 41, 6507–6513 (2002).

    Article  ADS  Google Scholar 

  40. Tao, H. et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181–7188 (2008).

    Article  ADS  Google Scholar 

  41. Huang, L. et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt. Lett. 37, 154–156 (2012).

    Article  ADS  Google Scholar 

  42. Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012).

    Google Scholar 

  43. Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    Article  ADS  Google Scholar 

  44. Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

    Article  ADS  Google Scholar 

  45. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article  ADS  Google Scholar 

  46. Van Exter, M. & Grischkowsky, D. Carrier dynamics of electrons and holes in moderately doped silicon. Phys. Rev. B 41, 12410–12419 (1990).

    Article  Google Scholar 

  47. Mallat, S. A Wavelet Tour of Signal Processing 3rd edn (Academic, 2009).

    MATH  Google Scholar 

  48. Nielsen, K. et al. Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17, 8592–8601 (2009).

    Article  ADS  Google Scholar 

  49. Dupont, S., Moselund, P. M., Leick, L., Ramsay, J. & Keiding, S. R. Up-conversion of a megahertz mid-IR supercontinuum. J. Opt. Soc. Am. B 30, 2570–2575 (2013).

    Article  ADS  Google Scholar 

  50. Adachi, S. Properties of Group-IV, III–V, and II–VI Semiconductors (Wiley, 2005).

    Book  Google Scholar 

  51. Jewariya, M., Nagai, M. & Tanaka, K. Enhancement of terahertz wave generation by cascaded χ(2) processes in LiNbO3 . J. Opt. Soc. Am. B 26, A101–A106 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Strategic Information and Communications R&D Promotion Programme (SCOPE) from the Ministry of Internal Affairs and Communications of Japan, by the Osaka University Multidisciplinary Research Laboratory System and by the Murata Science Foundation. The authors thank Y. Minamikata, A. Kaku, S. Horiguchi, T. Ikeou, A. Suminokura, D. Tsuji and M. Yata (Osaka University) for their help with THz wireless communication, measurements and simulations, and D. Ohnishi and E. Miyai (ROHM Co., Ltd) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.K. performed the sample design, experiments and data analysis, and wrote the manuscript. M.F. planned and led the project, supported the sample design, experiments and data analysis, and wrote the manuscript. M.N. and M.A. supported the THz TDS measurements and data analysis. T.N. supported the THz wireless communication experiments and gave advice on the project direction. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Masayuki Fujita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3640 kb)

Supplementary movie

Supplementary movie (MOV 6173 kb)

Supplementary movie

Supplementary movie (MOV 6129 kb)

Supplementary movie

Supplementary movie (MOV 7027 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakimi, R., Fujita, M., Nagai, M. et al. Capture of a terahertz wave in a photonic-crystal slab. Nature Photon 8, 657–663 (2014). https://doi.org/10.1038/nphoton.2014.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing