Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering

Abstract

The motion of chemical bonds within molecules can be observed in real time in the form of vibrational wave packets prepared and interrogated through ultrafast nonlinear spectroscopy. Such nonlinear optical measurements are commonly performed on large ensembles of molecules and, as such, are limited to the extent that ensemble coherence can be maintained. Here, we describe vibrational wave packet motion on single molecules, recorded through time-resolved, surface-enhanced, coherent anti-Stokes Raman scattering. The sensitivity required to detect the motion of a single molecule under ambient conditions is achieved by equipping the molecule with a dipolar nano-antenna (a gold dumbbell). In contrast with measurements in ensembles, the vibrational coherence on a single molecule does not undergo pure dephasing. It develops phase fluctuations with characteristic statistics. We present the time evolution of discretely sampled statistical states, and highlight the unique information content in the characteristic, early-time probability distribution function of the signal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SERS of BPE molecules on dumbbell antennas.
Figure 2: tr-CARS microscopy of individual molecule-dumbbells structures.
Figure 3: Stable CARS under minimum photodamaging conditions.
Figure 4: tr-CARS traces in the single-molecule limit.
Figure 5: PDFs calculated for different realizations of the number of molecules N, number of modes V and variance of the spectral fluctuations σ.

Similar content being viewed by others

References

  1. Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

    Article  ADS  Google Scholar 

  2. Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article  ADS  Google Scholar 

  3. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    Article  ADS  Google Scholar 

  4. Nie, S., Chiu, D. T. & Zare, R. N. Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018–1021 (1994).

    Article  ADS  Google Scholar 

  5. Eigen, M. & Rigler, R. Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl Acad. Sci. USA 91, 5740–5747 (1994).

    Article  ADS  Google Scholar 

  6. Kulzer, F. & Orrit, M. Single molecule optics. Ann. Rev. Phys. Chem. 55, 585–611 (2004).

    Article  ADS  Google Scholar 

  7. Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3323–3327 (2010).

    Article  Google Scholar 

  8. Moerner, W. E. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106, 910–927 (2002).

    Article  Google Scholar 

  9. Plakhotnik, T., Walser, D., Pirotta, M., Renn, A. & Wild, U. P. Nonlinear spectroscopy on a single quantum system: two-photon absorption of a single molecule. Science 271, 1703–1705 (1996).

    Article  ADS  Google Scholar 

  10. Gaiduk, A., Yorulmaz, M., Ruijgrok, P. V. & Orrit, M. Room-temperature detection of a single molecule's absorption by photothermal contrast. Science 330, 353–356 (2010).

    Article  ADS  Google Scholar 

  11. Barkai, E., Jung, Y. & Silbey, R. Theory of single-molecule spectroscopy: beyond the ensemble average. Ann. Rev. Phys. Chem. 55, 457–507 (2004).

    Article  ADS  Google Scholar 

  12. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

    Article  ADS  Google Scholar 

  13. Xie, S. Single-molecule approach to enzymology. Single Molecules 2, 229–236 (2001).

    Article  ADS  Google Scholar 

  14. Hildner, R., Brinks, D. & van Hulst, N. F. Femtosecond coherence and quantum control of single molecules at room temperature. Nature Phys. 7, 172–177 (2011).

    Article  ADS  Google Scholar 

  15. Brinks, D., Hildner, R., Stefani, F. D. & van Hulst, N. F. Coherent control of single molecules at room temperature. Faraday Disc. 153, 51–60 (2011).

    Article  ADS  Google Scholar 

  16. Brinks, D. et al. Visualizing and controlling vibrational wave packets of single molecules. Nature 465, 905–908 (2010).

    Article  ADS  Google Scholar 

  17. Hildner, R., Brinks, D., Stefani, F. D. & van Hulst, N. F. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy. Phys. Chem. Chem. Phys. 13, 1888–1894 (2011).

    Article  Google Scholar 

  18. Novotny, L. & van Hulst, N. Antennas for light. Nature Photon. 5, 83–90 (2011).

    Article  ADS  Google Scholar 

  19. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977).

    Article  Google Scholar 

  20. Schatz, G. C. Theoretical-studies of surface enhanced Raman scattering. Acc. Chem. Res. 17, 370–376 (1984).

    Article  Google Scholar 

  21. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  22. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  ADS  Google Scholar 

  23. Etchegoin, P. G. & Le Ru, E. C. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).

    Article  Google Scholar 

  24. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  ADS  Google Scholar 

  25. Link, S., Burda, C., Nikoobakht, B. & El-Sayed, M. A. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104, 6152–6163 (2000).

    Article  Google Scholar 

  26. Voronine, D. V. et al. Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes. Sci. Rep. 2, 891 (2012).

    Article  Google Scholar 

  27. Steuwe, C., Kaminski, C. F., Baumberg, J. J. & Mahajan, S. Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Lett. 11, 5339–5343 (2011).

    Article  ADS  Google Scholar 

  28. Namboodiri, V. et al. Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine. Vib. Spectrosc. 56, 9–12 (2011).

    Article  Google Scholar 

  29. Ichimura, T., Hayazawa, N., Hashimoto, M., Inouye, Y. & Kawata, S. Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys. Rev. Lett. 92, 220801 (2004).

    Article  ADS  Google Scholar 

  30. Frontiera, R. R., Henry, A.-I., Gruenke, N. L. & Van Duyne, R. P. Surface-enhanced femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2, 1199–1203 (2011).

    Article  Google Scholar 

  31. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

    Google Scholar 

  32. Karavitis, M., Zadoyan, R. & Apkarian, V. A. Time resolved coherent anti-Stokes Raman scattering of I2 isolated in matrix argon: vibrational dynamics on the ground electronic state. J. Chem. Phys. 114, 4131–4140 (2001).

    Article  ADS  Google Scholar 

  33. Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).

    MATH  Google Scholar 

  34. Kleinman, S. L. et al. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J. Am. Chem. Soc. 135, 301–308 (2013).

    Article  Google Scholar 

  35. Wustholz, K. L. et al. Structure–activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 10903–10910 (2010).

    Article  Google Scholar 

  36. Whitmore, D. D. et al. High sensitivity surface-enhanced Raman scattering in solution using engineered silver nanosphere dimers. J. Phys. Chem. C 115, 15900–15907 (2011).

    Article  Google Scholar 

  37. Dieringer, J. A., Lettan, R. B., Scheidt, K. A. & Van Duyne, R. P. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129, 16249–16256 (2007).

    Article  Google Scholar 

  38. Wang, D., Zhu, W., Best, M. D., Camden, J. P. & Crozier, K. B. Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett. 13, 2194–2198 (2013).

    Article  ADS  Google Scholar 

  39. Banik, M. et al. Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse. ACS Nano 6, 10343–10354 (2012).

    Article  Google Scholar 

  40. Yang, W.-H., Hulteen, J., Schatz, G. C. & Van Duyne, R. P. A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: experiment and theory. J. Chem. Phys. 104, 4313–4323 (1996).

    Article  ADS  Google Scholar 

  41. Klingsporn, J. M., Sonntag, M. D., Seideman, T. & Van Duyne, R. P. Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 136, 3881–3887 (2014).

    Article  Google Scholar 

  42. Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007).

    Article  ADS  Google Scholar 

  43. Wang, Y., Lin, C.-Y., Nikolaenko, A., Raghunathan, V. & Potma, E. O. Four-wave mixing microscopy of nanostructures. Adv. Opt. Photon. 3, 1–52 (2011).

    Article  Google Scholar 

  44. Zhang, Y., Wen, F., Zhen, Y.-R., Nordlander, P. & Halas, N. J. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc. Natl Acad. Sci. USA 110, 9215–9219 (2013).

    Article  ADS  Google Scholar 

  45. Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications. (Roberts & Co., 2007).

    Google Scholar 

  46. Young, I. T. Proof without prejudice: use of the Kolmogorov–Smirnov test for the analysis of histograms from flow systems and other sources. J. Histochem. Cytochem. 25, 935–941 (1977).

    Article  Google Scholar 

  47. Golschleger, I. U., van Staveren, M. N. & Apkarian, V. A. Quantum tomography of a molecular bond in ice. J. Chem. Phys. 139, 034201 (2013).

    Article  ADS  Google Scholar 

  48. Zadoyan, R., Kohen, D., Lidar, D. A. & Apkarian, V. A. The manipulation of massive ro-vibronic superpositions using time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS): from quantum control to quantum computing. Chem. Phys. 266, 323–351 (2001).

    Article  Google Scholar 

  49. Bihary, Z., Glenn, D. R., Lidar, D. A. & Apkarian, V. A. An implementation of the Deutsch–Jozsa algorithm on molecular vibronic coherences through four-wave mixing: a theoretical study. Chem. Phys. Lett. 360, 459–465 (2002).

    Article  ADS  Google Scholar 

  50. Glenn, D. R., Lidar, D. A. & Apkarian, V. A. Quantum logic gates in iodine vapor using time–frequency resolved coherent anti-Stokes Raman scattering: a theoretical study. Mol. Phys. 104, 1249–1266 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. P. Van Duyne for providing the samples, P. Z. El-Khoury for DFT calculations for BPE and N. Apkarian for pointing out the KS analysis. SEM and TEM work was performed at the Laboratory for Electron and X-ray Instrumentation (LEXI) at UC Irvine. This work was made possible by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space–Time Limit (grant CHE-0802913). E.H. is supported by the Academy of Finland Decision no. 265502.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and D.A.F. conducted the tr-CARS measurements. M.B., E.H. and S.D. carried out the Raman and SEM/TEM measurements. S.Y. and V.A.A. performed the analysis. E.O.P. and V.A.A. conceived the idea for the work and wrote the manuscript.

Corresponding author

Correspondence to Eric O. Potma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3455 kb)

Supplementary movie

Supplementary movie (AVI 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yampolsky, S., Fishman, D., Dey, S. et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nature Photon 8, 650–656 (2014). https://doi.org/10.1038/nphoton.2014.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing