Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Left-handed optical radiation torque

Subjects

Abstract

Optical forces and torques are two mechanical degrees of freedom available to manipulate matter, and form the basis of optical tweezing strategies1,2. In contrast to the Keplerian intuition that objects should be pushed downstream an incident photon flux, the concept of ‘negative’ optical forces has recently been described3,4 and has triggered many developments5,6,7,8,9,10,11,12,13,14. Here, we report on the counterintuitive angular analogue of negative optical forces by demonstrating that circularly polarized Gaussian light beams give rise to torque with opposite sign to that of the incident optical angular momentum. Such a ‘left-handed’ mechanical effect is demonstrated by the use of an inhomogeneous and anisotropic transparent macroscopic medium. Practical difficulties associated with the direct observation of optically induced spinning of a macroscopic object are circumvented via the rotational Doppler effect15,16. These results shed light on spin–orbit optomechanics and equip the left-handed optomechanical toolbox with angular features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the various kinds of ORT produced by circularly polarized Gaussian beams.
Figure 2: Spin–orbit light scattering samples.
Figure 3: Demonstration of right-handed, zero and left-handed ORT.
Figure 4: Quantitative analysis of rotational Doppler experiments.
Figure 5: Generalized ORT rotational Doppler experiments.

Similar content being viewed by others

References

  1. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  2. Padgett, M. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

    Article  ADS  Google Scholar 

  3. Lee, S.-H., Roichman, Y. & Grier, D. G. Optical solenoid beams. Opt. Express 18, 6988–6993 (2010).

    Article  ADS  Google Scholar 

  4. Sukhov, S. & Dogariu, A. On the concept of ‘tractor beams’. Opt. Lett. 35, 3847–3849 (2010).

    Article  ADS  Google Scholar 

  5. Salandrino A. & Christodoulides, D. N. Reverse optical forces in negative index dielectric waveguide arrays. Opt. Lett. 36, 3103–3105 (2011).

    Article  ADS  Google Scholar 

  6. Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nature Photon. 5, 531–534 (2011).

    Article  ADS  Google Scholar 

  7. Sukhov, S. & Dogariu, A. Negative nonconservative forces: optical “tractor beams” for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011).

    Article  ADS  Google Scholar 

  8. Novitsky, A., Qiu, C.-W. & Wang, H. Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett. 107, 203601 (2011).

    Article  ADS  Google Scholar 

  9. Nemirovsky, J., Rechtsman, M. C. & Segev, M. Negative radiation pressure and negative effective refractive index via dielectric birefringence. Opt. Express 20, 8907–8914 (2012).

    Article  ADS  Google Scholar 

  10. Novitsky, A., Qiu, C.-W. & Lavrinenko, A. Material-independent and size-independent tractor beams for dipole objects. Phys. Rev. Lett. 109, 023902 (2012).

    Article  ADS  Google Scholar 

  11. Dogariu, A., Sukhov, S. & Saenz, J. Optically induced ‘negative forces’. Nature Photon. 7, 24–27 (2013).

    Article  ADS  Google Scholar 

  12. Brzobohatý, O. et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nature Photon. 7, 123–127 (2013).

    Article  ADS  Google Scholar 

  13. Wang, N., Chen, J., Liu, S. & Lin, Z. Dynamical and phase-diagram study on stable optical pulling force in Bessel beams. Phys. Rev. A 87, 063812 10.1103/PhysRevA.87.063812(2013).

    Article  ADS  Google Scholar 

  14. Kajorndejnukul, V., Ding, W., Sukhov, S., Qiu, C.-W. & Dogariu, A. Linear momentum increase and negative optical forces at dielectric interface. Nature Photon. 7, 787–790 (2013).

    Article  ADS  Google Scholar 

  15. Allen, P. J. A radiation torque experiment. Am. J. Phys. 34, 1185–1192 (1966).

    Article  ADS  Google Scholar 

  16. Garetz, B. A. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981).

    Article  ADS  Google Scholar 

  17. Marston, P. L. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am. 120, 3518 (2006).

    Article  ADS  Google Scholar 

  18. Marston, P. L. Negative axial radiation forces on solid spheres and shells in a Bessel beam. J. Acoust. Soc. Am. 122, 3162 10.1121/1.2799501(2007).

    Article  ADS  Google Scholar 

  19. Mitri, F. G. Negative axial radiation force on a fluid and elastic spheres illuminated by a high-order Bessel beam of progressive waves. J. Phys. A 42, 245202 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  20. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical torque controlled by elliptical polarization. Opt. Lett. 23, 1–3 (1998).

    Article  ADS  Google Scholar 

  21. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    Article  ADS  Google Scholar 

  22. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    Article  ADS  Google Scholar 

  23. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    Article  ADS  Google Scholar 

  24. Shimotsuma, Y., Kazansky, P. G., Qiu, J. & Hirao, K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003).

    Article  ADS  Google Scholar 

  25. Beresna, M., Gecevičius, M., Kazansky, P. G. & Gertus, T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 201101 10.1063/1.3590716(2011).

    Article  ADS  Google Scholar 

  26. Higurashi, E., Ukita, H., Tanaka, H. & Ohguchi, O. Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. Appl. Phys. Lett. 64, 2209–2210 (1994).

    Article  ADS  Google Scholar 

  27. Galajda, P. & Ormos, P. Rotation of microscopic propellers in laser tweezers. J. Opt. B 4, S78–S81 (2002).

    Article  ADS  Google Scholar 

  28. Jesacher, A., Fürhapter, S., Maurer, C., Bernet, S. & Ritsch-Marte, M. Reverse orbiting of microparticles in optical vortices. Opt. Lett. 31, 2824–2826 (2006).

    Article  ADS  Google Scholar 

  29. Asavei, T. et al. Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization. New J. Phys. 11, 093021 10.1088/1367-2630/11/9/093021(2009).

    Article  ADS  Google Scholar 

  30. Friese, M. E. J., Enger, J., Rubinsztein-Dunlop, H. & Heckenberg, N. R. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A 54, 1593–1596 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Loussert for the polariscopic optical characterization of the samples. This study received financial support from the French State in the frame of the ‘Investments for the future’ Programme IdEx Bordeaux (reference ANR-10-IDEX-03-02).

Author information

Authors and Affiliations

Authors

Contributions

D.H. realized the experimental set-up and conducted the experiments. E.B. conceived the experiment and supervised the project. D.H. and E.B. wrote the manuscript.

Corresponding author

Correspondence to Etienne Brasselet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakobyan, D., Brasselet, E. Left-handed optical radiation torque. Nature Photon 8, 610–614 (2014). https://doi.org/10.1038/nphoton.2014.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing