Remote creation of hybrid entanglement between particle-like and wave-like optical qubits

Abstract

The wave–particle duality of light has led to two different encodings for optical quantum information processing. Several approaches have emerged based either on particle-like discrete-variable states (that is, finite-dimensional quantum systems) or on wave-like continuous-variable states (that is, infinite-dimensional systems). Here, we demonstrate the generation of entanglement between optical qubits of these different types, located at distant places and connected by a lossy channel. Such hybrid entanglement, which is a key resource for a variety of recently proposed schemes, including quantum cryptography and computing, enables information to be converted from one Hilbert space to the other via teleportation and therefore the connection of remote quantum processors based upon different encodings. Beyond its fundamental significance for the exploration of entanglement and its possible instantiations, our optical circuit holds promise for implementations of heterogeneous network, where discrete- and continuous-variable operations and techniques can be efficiently combined.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Measurement-induced hybrid entanglement.
Figure 2: Experimental quantum state tomography.
Figure 3: Experimental quantum states from separable to maximally entangled.

References

  1. 1

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Braunstein, S. L. & Pati, A. (eds) Continuous Variable Quantum Information (Kluwer Academic, 2003).

    Google Scholar 

  3. 3

    Ralph, T. C. & Pryde, G. J. Optical quantum computation. Prog. Opt. 54, 209–269 (2010).

    ADS  Article  Google Scholar 

  4. 4

    O'Brien, J. L., Furusawa, A. & Vucković, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    ADS  Article  Google Scholar 

  5. 5

    Knill, E., Laflamme, R. & Milburn G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  6. 6

    Van Loock, P. Optical hybrid approaches to quantum information. Laser Photon. Rev. 5, 167–200 (2011).

    ADS  Article  Google Scholar 

  7. 7

    Jeong, H. & Kim, M. S. Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002).

    ADS  Article  Google Scholar 

  8. 8

    Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).

    ADS  Article  Google Scholar 

  9. 9

    Sangouard, N. et al. Quantum repeaters with entangled coherent states. J. Opt. Soc. Am. B 27, 137–145 (2010).

    Article  Google Scholar 

  10. 10

    Brask, J. B. et al. A hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010).

    ADS  Article  Google Scholar 

  11. 11

    Lund, A. P., Ralph, T. C. & Haselgrove, H. L. Fault-tolerant optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Park, K. & Jeong, H. Entangled coherent states versus entangled photon pairs for practical quantum-information processing. Phys. Rev. A 82, 062325 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Lee, S.-W. & Jeong, H. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Morin O. et al. Witnessing trustworthy single-photon entanglement with local homodyne measurements. Phys. Rev. Lett. 110, 130401 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Kreis, K. & van Loock, P. Classifying, quantifying, and witnessing qudit–qumode hybrid entanglement. Phys. Rev. A 85, 032307 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Rigas, J., Gühne, O. & Lütkenhaus, N. Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure. Phys. Rev. A 73, 012341 (2006).

    ADS  Article  Google Scholar 

  17. 17

    Wittmann, C. et al. Witnessing effective entanglement over a 2 km fiber channel. Opt. Express 18, 4499–4509 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Spiller, T. P. et al. Quantum computation by communication. New J. Phys. 8, 30 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Van Loock, P. et al. Hybrid quantum computation in quantum optics. Phys. Rev. A 78, 022303 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    Van Loock, P. et al. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006).

    ADS  Article  Google Scholar 

  21. 21

    Jeong, H. Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005).

    ADS  Article  Google Scholar 

  22. 22

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Article  Google Scholar 

  23. 23

    Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R. & Grangier, P. Preparation of non-local superpositions of quasi-classical light states. Nature Phys. 5, 189–192 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Marek, P. & Fiurášek, J. Elementary gates for quantum information with superposed coherent states. Phys. Rev. A 82, 014302 (2010).

    ADS  Article  Google Scholar 

  25. 25

    Morin, O., Fabre, C. & Laurat, J. Experimentally accessing the optimal temporal mode of traveling quantum light states. Phys. Rev. Lett. 111, 213602 (2013).

    ADS  Article  Google Scholar 

  26. 26

    Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    ADS  Article  Google Scholar 

  27. 27

    Neergard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Molmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).

    ADS  Article  Google Scholar 

  28. 28

    Wakui, K., Takahashi, H., Furusawa, A. & Sasaki, M. Controllable generation of highly nonclassical states from nearly pure squeezed vacua. Opt. Express 15, 3568–3574 (2007).

    ADS  Article  Google Scholar 

  29. 29

    Lee, N. et al. Teleportation of nonclassical wave packets of light. Science 332, 330–333 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Morin, O., D'Auria, V., Fabre C. & Laurat, J. High-fidelity single-photon source based on a type-II optical parametric oscillator. Opt. Lett. 37, 3738–3740 (2012).

    ADS  Article  Google Scholar 

  31. 31

    D'Auria, V., Lee, N., Amri, T., Fabre, C. & Laurat, J. Quantum decoherence of single-photon counters. Phys. Rev. Lett. 107, 050504 (2011).

    ADS  Article  Google Scholar 

  32. 32

    D'Auria, V., Morin, O., Fabre, C. & Laurat, J. Effect of the heralding detector properties on the conditional generation of single-photon states. Eur. Phys. J. D 66, 249 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Van Enk, S. J., Lütkenhaus, N. & Kimble, H. J. Experimental procedures for entanglement verification. Phys. Rev. A 75, 052318 (2007).

    ADS  Article  Google Scholar 

  34. 34

    Lvovksy, A. I. & Raymer, M. G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009).

    ADS  Article  Google Scholar 

  35. 35

    Vidal, G. & Werner, R. F. A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    ADS  Article  Google Scholar 

  36. 36

    Park, K., Lee, S.-W. & Jeong, H. Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement under decoherence effects. Phys. Rev. A 86, 062301 (2012).

    ADS  Article  Google Scholar 

  37. 37

    Nielsen, A. E. B. & Molmer, K. Transforming squeezed light into a large-amplitude coherent-state superposition. Phys. Rev. A 76, 043840 (2007).

    ADS  Article  Google Scholar 

  38. 38

    Morin, O. et al. Quantum state engineering of light with continuous-wave optical parametric oscillators. J. Visualized Experiments 87, e51224 10.3791/51224(2014).

    Article  Google Scholar 

  39. 39

    Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nature Photon. 7, 210–214 (2013).

    ADS  Article  Google Scholar 

  40. 40

    Andersen, U. L. & Neergaard-Nielsen, J. S. Heralded generation of a micro–macro entangled state. Phys. Rev. A 88, 022337 (2013).

    ADS  Article  Google Scholar 

  41. 41

    Lvovsky, A. I., Ghobadi, R., Chandra, A., Prasad, A. S. & Simon, C. Observation of micro–macro entanglement of light. Nature Phys. 9, 541–544 (2013).

    ADS  Article  Google Scholar 

  42. 42

    Bruno, N. et al. Displacement of entanglement back and forth between the micro and macro domains. Nature Phys. 9, 545–548 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank N. Sangouard for discussions and V. D'Auria and F. A. S. Barbosa for their valuable contributions in the early stage of the experiment. This work is supported by the ERA-Net CHIST-ERA (QScale) and by the European Research Council (ERC) starting grant HybridNet. K.H. acknowledges support from the Foundation for the Author of National Excellent Doctoral Dissertation of China (PY2012004) and the China Scholarship Council. C.F. and J.L. are members of the Institut Universitaire de France.

Author information

Affiliations

Authors

Contributions

J.L. and O.M. conceived the experiment. O.M., K.H., J.Liu and H.L.J. carried out the experiment and analysed the data, under the supervision of J.L. O.M, K.H., H.L.J., C.F. and J.L. contributed to discussing the implementation and the results. O.M., K.H. and J.L. wrote the manuscript.

Corresponding author

Correspondence to Julien Laurat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 762 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morin, O., Huang, K., Liu, J. et al. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nature Photon 8, 570–574 (2014). https://doi.org/10.1038/nphoton.2014.137

Download citation

Further reading