Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators

Abstract

Compound-photonic structures with gain and loss1 provide a powerful platform for testing various theoretical proposals on non-Hermitian parity–time-symmetric quantum mechanics2,3,4,5 and initiate new possibilities for shaping optical beams and pulses beyond conservative structures. Such structures can be designed as optical analogues of complex parity–time-symmetric potentials with real spectra. However, the beam dynamics can exhibit unique features distinct from conservative systems due to non-trivial wave interference and phase-transition effects. Here, we experimentally realize parity–time-symmetric optics on a chip at the 1,550 nm wavelength in two directly coupled high-Q silica-microtoroid resonators with balanced effective gain and loss. With this composite system, we further implement switchable optical isolation with a non-reciprocal isolation ratio from −8 dB to +8 dB, by breaking time-reversal symmetry with gain-saturated nonlinearity in a large parameter-tunable space. Of importance, our scheme opens a door towards synthesizing novel microscale photonic structures for potential applications in optical isolators, on-chip light control and optical communications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: On-chip WGM silica microtoroid resonators with gain and loss for PT symmetry and optical isolation.
Figure 2: Transmission spectra in PT symmetry.
Figure 3: Supersensitive optical isolation performance of the system.
Figure 4: Optical isolation performance of the device versus separation distance between toroid 2 and fibre 2.

Similar content being viewed by others

References

  1. El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).

    Article  ADS  Google Scholar 

  2. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  3. Bender, C. M., Boettcher, S. & Meisinger, P. N. PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  4. Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  5. Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  6. Ruter, C. E. et al. Observation of parity–time symmetry in optics. Nature Phys. 6, 192–195 (2010).

    Article  ADS  Google Scholar 

  7. Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    Article  ADS  Google Scholar 

  8. Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Article  ADS  Google Scholar 

  9. Berry, M. V. Optical lattices with PT symmetry are not transparent. J. Phys. A 41, 244007 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  10. Klaiman, S., Gunther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  11. Bender, N. et al. Observation of asymmetric transport in structures with active nonlinearities. Phys. Rev. Lett. 110, 234101 (2013).

    Article  ADS  Google Scholar 

  12. Bittner, S. et al. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett. 108, 024101 (2012).

    Article  ADS  Google Scholar 

  13. Chtchelkatchev, N. M., Golubov, A. A., Baturina, T. I. & Vinokur, V. M. Stimulation of the fluctuation superconductivity by PT symmetry. Phys. Rev. Lett. 109, 150405 (2012).

    Article  ADS  Google Scholar 

  14. Hang, C., Huang, G. & Konotop, V. V. PT symmetry with a system of three-level atoms. Phys. Rev. Lett. 110, 083604 (2013).

    Article  ADS  Google Scholar 

  15. Sheng, J., Miri, M.-A., Christodoulides, D. N. & Xiao, M. PT-symmetric optical potentials in a coherent atomic medium. Phys. Rev. A 88, 041803 (2013).

    Article  ADS  Google Scholar 

  16. Benisty, H. et al. Implementation of PT symmetric devices using plasmonics: principle and applications. Opt. Express 19, 18004–18019 (2011).

    Article  ADS  Google Scholar 

  17. Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    Article  ADS  Google Scholar 

  18. Ramezni, H., Kottos, T., Kovanis, V. & Christodoulides, D. N. Exceptional-point dynamics in photonic honeycomb lattices with PT symmetry. Phys. Rev. A 85, 013818 (2012).

    Article  ADS  Google Scholar 

  19. Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

    Article  ADS  Google Scholar 

  20. Longhi, S. Invisibility in PT-symmetric complex crystals. J. Phys. A 44, 485302 (2011).

    Article  MathSciNet  Google Scholar 

  21. Mostafazadeh, A. Invisibility and PT symmetry. Phys. Rev. A 87, 012103 (2013).

    Article  ADS  Google Scholar 

  22. Longhi, S. PT-symmetric laser absorber. Phys. Rev. A 82, 031801(R) 10.1103/PhysRevA.82.031801(2010).

    Article  ADS  Google Scholar 

  23. Chong, Y. D., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).

    Article  ADS  Google Scholar 

  24. Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies. Nature Mater. 12, 108–113 (2013).

    Article  ADS  Google Scholar 

  25. Sun, Y., Tan, W., Li, H.-Q., Li, J. & Chen, H. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014).

    Article  ADS  Google Scholar 

  26. Jalas, D. et al. What is—and what is not—an optical isolator. Nature Photon. 7, 579–582 (2013).

    Article  ADS  Google Scholar 

  27. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photon. 5, 758–762 (2011).

    Article  ADS  Google Scholar 

  28. Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

    Article  ADS  Google Scholar 

  29. Sukhrukov, A. A., Xu, Z. Y. & Kivshar, Y. S. Nonlinear suppression of time reversals in PT-symmetric optical couplers. Phys. Rev. A 82, 043818 (2010).

    Article  ADS  Google Scholar 

  30. Kang, M. S., Butsch, A. & Russell, P. St. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nature Photon. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  31. Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    Article  ADS  Google Scholar 

  32. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  33. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 904–914 (2009).

    Article  ADS  Google Scholar 

  34. Zheng, C. et al. Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities. Opt. Express 20, 18319–18325 (2012).

    Article  ADS  Google Scholar 

  35. Yang, L., Carmon, T., Min, B., Spillane, S. M. & Vahala, K. J. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process. Appl. Phys. Lett. 86, 091114 (2005).

    Article  ADS  Google Scholar 

  36. Fan, H., Hua, S., Jiang, X. & Xiao, M. Demonstration of an erbium-doped microsphere laser on a silicon chip. Laser Phys. Lett. 10, 105809 (2013).

    Article  ADS  Google Scholar 

  37. Mostafazadeh, A. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Phys. Rev. Lett. 102, 220402 (2009).

    Article  ADS  Google Scholar 

  38. Weiss, D. S. et al. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett. 20, 1835–1837 (1995).

    Article  ADS  Google Scholar 

  39. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Modal coupling in traveling-wave resonators. Opt. Lett. 27, 1669–1671 (2002).

    Article  ADS  Google Scholar 

  40. Grigoriev, V. & Biancalana, F. Nonreciprocal switching thresholds in coupled nonlinear microcavities. Opt. Lett. 36, 2131–2133 (2011).

    Article  ADS  Google Scholar 

  41. Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nature Phys. 10, 394–398 (2014).

    Article  ADS  Google Scholar 

  42. Carmon, T., Yang, L., & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Basic Research Program of China (nos. 2012CB921804 and 2011CBA00205), the National Natural Science Foundation of China (nos. 11104137 and 11321063), the Natural Science Foundation of Jiangsu Province, China (BK2011554) and the Specialized Research Fund for the Doctoral Program of Higher Education (20110091120015). J.M.W. and L.J. acknowledge funding support from a DARPA QUINESS grant, the Alfred P. Sloan Foundation and the David and Lucile Packard Foundation. The authors thank Huibo Fan and Yang Ding for the preparation of the erbium-doped silica sol–gel film.

Author information

Authors and Affiliations

Authors

Contributions

X.J., J.W., L.J. and M.X. conceived the idea. X.J. and M.X. supervised the experiment with contributions from L.C., S.H., C.Y., G.L. and G.W. All authors contributed to the discussions about the project, analysis of experimental data and writing of the manuscript.

Corresponding authors

Correspondence to Xiaoshun Jiang, Jianming Wen or Min Xiao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Jiang, X., Hua, S. et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nature Photon 8, 524–529 (2014). https://doi.org/10.1038/nphoton.2014.133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing