Mapping distributed brain function and networks with diffuse optical tomography


Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The HD-DOT system.
Figure 2: Finite-element modelling of NIR light propagation in a subject.
Figure 3: Evaluation of distributed brain function mapping by imaging hierarchical language processing.
Figure 4: Mapping the functional connections of distributed brain networks.
Figure 5: Measuring brain function in subjects contra-indicated for MRI.


  1. 1

    Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  Google Scholar 

  2. 2

    Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  Google Scholar 

  3. 3

    Zhang, D. & Raichle, M. E. Disease and the brain's dark energy. Nature Rev. Neurol. 6, 15–28 (2010).

    Article  Google Scholar 

  4. 4

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002).

    Article  Google Scholar 

  5. 5

    Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J. Neurosci. 29, 1860–1873 (2009).

    Article  Google Scholar 

  6. 6

    Kennedy, D. P. & Courchesne, E. The intrinsic functional organization of the brain is altered in autism. NeuroImage 39, 1877–1885 (2008).

    Article  Google Scholar 

  7. 7

    Carter, A. R. et al. Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil. Neural Repair 26, 7–19 (2012).

    Article  Google Scholar 

  8. 8

    Jobsis, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977).

    ADS  Article  Google Scholar 

  9. 9

    Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA 89, 5951–5955 (1992).

    ADS  Article  Google Scholar 

  10. 10

    Obrig, H. & Villringer, A. Beyond the visible—imaging the human brain with light. J. Cerebr. Blood Flow Metab. 23, 1–18 (2003).

    Article  Google Scholar 

  11. 11

    White, B. R. & Culver, J. P. Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance. J. Biomed. Opt. 15, 026006 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Zeff, B. W., White, B. R., Dehghani, H., Schlaggar, B. L. & Culver, J. P. Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography. Proc. Natl Acad. Sci. USA 104, 12169–12174 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Joseph, D. K., Huppert, T. J., Franceschini, M. A. & Boas, D. A. Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging. Appl. Opt. 45, 8142–8151 (2006).

    ADS  Article  Google Scholar 

  14. 14

    Koch, S. P. et al. High-resolution optical functional mapping of the human somatosensory cortex. Frontiers Neuroenerg. 2, 1–12 (2010).

    Google Scholar 

  15. 15

    Saager, R. & Berger, A. Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy. J. Biomed. Opt. 13, 034017 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Gregg, N. M., White, B. R., Zeff, B. W., Berger, A. J. & Culver, J. P. Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography. Frontiers Neuroenerg. 2, 1–8 (2010).

    Google Scholar 

  17. 17

    Okamoto, M. & Dan, I. Automated cortical projection of head-surface locations for transcranial functional brain mapping. NeuroImage 26, 18–28 (2005).

    Article  Google Scholar 

  18. 18

    Custo, A. et al. Anatomical atlas-guided diffuse optical tomography of brain activation. NeuroImage 49, 561–567 (2010).

    Article  Google Scholar 

  19. 19

    Eggebrecht, A. T. et al. A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping. NeuroImage 61, 1120–1128 (2012).

    Article  Google Scholar 

  20. 20

    Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585–589 (1988).

    ADS  Article  Google Scholar 

  21. 21

    Henderson, J. M. et al. Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson's disease: case report. Neurosurgery 57, E1063; discussion E1063 (2005).

    Article  Google Scholar 

  22. 22

    Dehghani, H. et al. Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction. Commun. Numer. Methods Eng. 25, 711–732 (2008).

    MathSciNet  Article  Google Scholar 

  23. 23

    Fox, P. T., Perlmutter, J. S. & Raichle, M. E. A stereotactic method of anatomical localization for positron emission tomography. J. Comput. Assist. Tomogr. 9, 141–153 (1985).

    Article  Google Scholar 

  24. 24

    Tootell, R. B. et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375, 139–141 (1995).

    ADS  Article  Google Scholar 

  25. 25

    Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Rev. Neurosci. 8, 700–711 (2007).

    Article  Google Scholar 

  26. 26

    Cohen, A. L. et al. Defining functional areas in individual human brains using resting functional connectivity MRI. NeuroImage 41, 45–57 (2008).

    Article  Google Scholar 

  27. 27

    Ferradal, S. L., Eggebrecht, A. T., Hassanpour, M., Snyder, A. Z. & Culver, J. P. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI. NeuroImage 85, 117–126 (2013).

    Article  Google Scholar 

  28. 28

    Marcus, D. S., Olsen, T. R., Ramaratnam, M. & Buckner, R. L. The extensible neuroimaging archive toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5, 11–34 (2007).

    Article  Google Scholar 

  29. 29

    Franceschini, M. A., Joseph, D. K., Huppert, T. J., Diamond, S. G. & Boas, D. A. Diffuse optical imaging of the whole head. J. Biomed. Opt. 11, 054007 (2006).

    ADS  Article  Google Scholar 

  30. 30

    Sato, H. et al. A NIRS–fMRI investigation of prefrontal cortex activity during a working memory task. NeuroImage 83C, 158–173 (2013).

    Article  Google Scholar 

  31. 31

    Shulman, G. L. et al. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J. Neurosci. 30, 3640–3651 (2010).

    Article  Google Scholar 

  32. 32

    Cannestra, A. F., Wartenburger, I., Obrig, H., Villringer, A. & Toga, A. W. Functional assessment of Broca's area using near infrared spectroscopy in humans. Neuroreport 14, 1961–1965 (2003).

    Article  Google Scholar 

  33. 33

    White, B. R. et al. Resting-state functional connectivity in the human brain revealed with diffuse optical tomography. NeuroImage 47, 148–156 (2009).

    Article  Google Scholar 

  34. 34

    Liao, S. M. et al. High-density diffuse optical tomography of term infant visual cortex in the nursery. J. Biomed. Opt. 17, 081414 (2012).

    ADS  Article  Google Scholar 

  35. 35

    Sasai, S. et al. A NIRS–fMRI study of resting state network. NeuroImage 63, 179–193 (2012).

    Article  Google Scholar 

  36. 36

    Mesquita, R. C., Franceschini, M. A. & Boas, D. A. Resting state functional connectivity of the whole head with near-infrared spectroscopy. Biomed. Opt. Express 1, 324–336 (2010).

    Article  Google Scholar 

  37. 37

    Boas, D. A., Elwell, C. E., Ferrari, M. & Taga, G. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. NeuroImage 85 (1), 1–5 (2014).

    Article  Google Scholar 

  38. 38

    Piper, S. K. et al. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. NeuroImage 8, 1–8 (2013).

    Google Scholar 

  39. 39

    Hallacoglu, B. et al. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy. J. Biomed. Opt. 17, 081406 (2012).

    ADS  Article  Google Scholar 

  40. 40

    Habermehl, C., Schmitz, C. H. & Steinbrink, J. Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG. Opt. Express 19, 18636–18644 (2011).

    ADS  Article  Google Scholar 

  41. 41

    Ntziachristos, V., Hielscher, A. H., Yodh, A. G. & Chance, B. Diffuse optical tomography of highly heterogeneous media. IEEE Trans. Med. Imag. 20, 470–478 (2001).

    Article  Google Scholar 

  42. 42

    Liebert, A. et al. Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance. NeuroImage 24, 426–435 (2005).

    Article  Google Scholar 

  43. 43

    Meng, L. et al. Head-up tilt and hyperventilation produce similar changes in cerebral oxygenation and blood volume: an observational comparison study using frequency-domain near-infrared spectroscopy. Can. J. Anaesth. 59, 357–365 (2012).

    Article  Google Scholar 

  44. 44

    Oluigbo, C. O. & Rezai, A. R. Magnetic resonance imaging safety of deep brain stimulator devices. Handbook Clin. Neurol. 116, 73–76 (2013).

    Article  Google Scholar 

  45. 45

    Kalin, R. & Stanton, M. S. Current clinical issues for MRI scanning of pacemaker and defibrillator patients. Pacing Clin. Electrophysiol.: PACE 28, 326–328 (2005).

    Article  Google Scholar 

  46. 46

    Price, D. L., De Wilde, J. P., Papadaki, A. M., Curran, J. S. & Kitney, R. I. Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J. Magn. Reson. 13, 288–293 (2001).

    Article  Google Scholar 

Download references


The authors thank G. Perry and M. Olevitch for help with HD-DOT instrumentation and software, F. Miezin for setting up the MRI sequences, D. Dierker for help and patience with FreeSurfer software, and T. Nolan for assistance with MRI data acquisition. The authors also thank B. White for helpful discussion of the manuscript. This work was supported in part by the National Institutes of Health (NIH, grants R01-EB009233 (J.P.C.), R01-NS078223 (J.P.C.), T32-NS007205-30 (A.R.V) and P30-NS048056 (A.Z.S.)), an Autism Speaks Postdoctoral Translational Research Fellowship 7962 (A.T.E.), a Fulbright Science and Technology PhD Award (S.L.F.) and a McDonnell Centre for Systems Neuroscience grant (A.R.V., J.P.C. and T.H.). The funding source had no involvement in the study design, collection, analysis, interpretation of the data, writing of the paper, or the decision to submit the paper for publication.

Author information




A.T.E. and J.P.C. designed the system. A.T.E. built the system. A.T.E., S.L.F., A.R.V., M.H., A.Z.S., T.H. and J.P.C. designed the experiments. A.T.E., S.L.F. and A.R.V. collected data. A.R.V. performed the Parkinson's evaluations. T.H. supervised A.R.V. A.T.E., S.L.F., M.H. and H.D. developed analysis code. A.T.E. and A.R.V. analysed the data. A.T.E., A.R.V., A.Z.S. and J.P.C. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Joseph P. Culver.

Ethics declarations

Competing interests

J.P.C. and Washington University have financial interests in Cephalogics LLC based on a licence of related optical imaging technology by the University to Cephalogics LLC.

Supplementary information

Supplementary information

Supplementary information (PDF 2348 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eggebrecht, A., Ferradal, S., Robichaux-Viehoever, A. et al. Mapping distributed brain function and networks with diffuse optical tomography. Nature Photon 8, 448–454 (2014).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing