Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subwavelength light focusing using random nanoparticles

Abstract

There has been an escalation in interest in developing methods to control the near field because of its role in subwavelength optics. Many novel ideas have emerged in the field of plasmonics1, super-resolution optical imaging2,3,4,5 and lithography6, among others. However, the near field generated in plasmonic metamaterials is fundamentally restricted by their predesigned structure, and super-resolution optical techniques do not directly control the near field. Here, we achieve direct control of the optical near field by shaping the wavefront impinging on turbid media consisting of random nanoparticles. The linear relation between input far field and scattered output near fields allows us to coherently control the near field at arbitrary positions. Direct control of the near field through scattering control offers novel approaches for subwavelength optics and may have direct applications in bio- and nanophotonics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Far- and near-field components of the speckle field generated from multiple scattering in random nanoparticles.
Figure 2: Principle of subwavelength near-field manipulation using scattering control.
Figure 3: Experimental set-up.
Figure 4: Construction of subwavelength focus.
Figure 5: Wavelength- and position-independent subwavelength focusing.

References

  1. Schuller, J. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  2. Rust, M. & Bates, M. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  Google Scholar 

  3. Klar, T. & Hell, S. W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999).

    Article  ADS  Google Scholar 

  4. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  ADS  Google Scholar 

  5. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  6. Brimhall, N., Andrew, T., Manthena, R. & Menon, R. Breaking the far-field diffraction limit in optical nanopatterning via repeated photochemical and electrochemical transitions in photochromic molecules. Phys. Rev. Lett. 107, 1–5 (2011).

    Article  Google Scholar 

  7. Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the limit diffraction. Science 257, 189–195 (1992).

    Article  ADS  Google Scholar 

  8. Pendry, J. B., Aubry, A., Smith, D. R. & Maier, S. A. Transformation optics and subwavelength control of light. Science 337, 549–552 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  9. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  10. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article  ADS  Google Scholar 

  11. Gjonaj, B., Aulbach, J., Johnson, P. & Mosk, A. Active spatial control of plasmonic fields. Nature Photon. 5, 360–363 (2011).

    Article  ADS  Google Scholar 

  12. Lerosey, G., De Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  13. Apostol, A. & Dogariu, A. Spatial correlations in the near field of random media. Phys. Rev. Lett. 91, 1–4 (2003).

    Article  Google Scholar 

  14. Carminati, R. Subwavelength spatial correlations in near-field speckle patterns. Phys. Rev. A 81, 1–5 (2010).

    Article  Google Scholar 

  15. Emiliani, V. et al. Near-field short range correlation in optical waves transmitted through random media. Phys. Rev. Lett. 90, 25–28 (2003).

    Article  MathSciNet  Google Scholar 

  16. Dainty, J. C. (ed.) Laser Speckle and Related Phenomena (Springer-Verlag, 1975).

    Book  Google Scholar 

  17. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  18. Hell, S. & Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992).

    Article  ADS  Google Scholar 

  19. Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nature Mater. 11, 1–4 (2012).

    Article  Google Scholar 

  20. Park, J., Park, C., Yu, H., Cho, Y. & Park, Y. Dynamic active wave plate using random nanoparticles. Opt. Express 20, 17010–17016 (2012).

    Article  ADS  Google Scholar 

  21. Park, J., Park, C., Yu, H., Cho, Y. & Park, Y. Active spectral filtering through turbid media. Opt. Lett. 37, 3261–3263 (2012).

    Article  ADS  Google Scholar 

  22. Aulbach, J., Gjonaj, B., Johnson, P., Mosk, A. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 5–8 (2011).

    Article  Google Scholar 

  23. Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    Article  ADS  Google Scholar 

  24. McCabe, D. J. et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nat. Commun. 2, 447 (2011).

    Article  ADS  Google Scholar 

  25. Van Putten, E. G. et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

    Article  ADS  Google Scholar 

  26. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  27. Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 1–4 (2011).

    Article  Google Scholar 

  28. Lerosey, G. et al. Time reversal of electromagnetic waves. Phys. Rev. Lett. 92, 19–21 (2004).

    Article  Google Scholar 

  29. Derode, A., Roux, P. & Fink, M. Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206–4210 (1995).

    Article  ADS  Google Scholar 

  30. Lemoult, F., Fink, M. & Lerosey, G. A polychromatic approach to far-field superlensing at visible wavelengths. Nat. Commun. 3, 889 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Y.-H. Lee, J.H. Shin, M.-K. Seo and B.Y. Kim for helpful discussions. This work was supported by KAIST, the KAIST Institute for Optical Science and Technology, the Korean Ministry of Education, Science and Technology (MEST; grant no. 2009-0087691, Basic Research Lab (BRL)), the National Research Foundation (NRF-2012R1A1A1009082, NRF-2012K1A3A1A09055128, NRF-2012-M3C1A1-048860, NRF-2012R1A1A2022754). The Pioneer Research Center Program (2013M3CIA3000499), and World Class University (WCU) program (No. R31-2008-000-10071-0) of the Ministry of Education, Science and Technology. Y.K.P. acknowledges support from TJ ChungAm Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.-H.P. and C.P. performed the experiments and analysed the data. H.Y., J.S., J.P., S.H., S.H.K. and K.T.N. contributed new reagents and analytic tools. Y.-H.C. and Y.P. conceived and supervised the project. J.-H.P., C.P., Y.-H.C. and Y.P. wrote the manuscript, with contributions from all co-authors.

Corresponding authors

Correspondence to Yong-Hoon Cho or YongKeun Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 912 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, JH., Park, C., Yu, H. et al. Subwavelength light focusing using random nanoparticles. Nature Photon 7, 454–458 (2013). https://doi.org/10.1038/nphoton.2013.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing